PPV ¥

o b, G s o

-

~hymyfom,except
S, Governsent vl;tmt written permission from Higher
R - O Software, Inc duction and sale by the National
o mtmm lnfamﬁm Seche 1s spetificany mmitted

Thv.- ﬂﬂé’!m jn this remrt are not tn,bt'constrm as an
~official Department of the Army. pqsitim. uawss so" desig-
mtctt by other auth "ized domm‘s.

The citatfon of tmle nms aMnms ef muf&tturers in
this mqrt is: not to be construed as offictal Government

t or- mm of 'emm:ia? pmducts or services
reformed herﬁa«

u:swesmm

g Mmthis mnmuismtmm 8o ot re-
S tum it m m ermwm. !

'

UNCLASSIFIED /

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered/

REPORT DOCUMENTATION PAGE : ,,E,g:‘;"c;,';:,!{‘;;‘i{,':':g..,
1. REPORT NUMBER] ; 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER
TR-7 Y D-Aces 989
4. TITLE (and Subtiie) o]

[/ Techniques for Operating System Machines, 5

—

0Ct o 1976 = May #8774

6. PERFORMING ORG. REPORT NUMBE'R

7. A.UTHOR(J) 8. CONTRACT OR GRANT NUMBER s/
Higher Order Software, Inc.

N S R PR , e DAAG?29-76-C-UH61XV6/
“\ P .y é:i‘ld“'a'x R I

Y

T PERFORMING ORGANIZA !ON NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
. AREA & WORK UNIT NUMBERS
Higher Order Software, Inc..~

Cambridge, MA 02139 1op T
i
11. CONTROLLING OFFICE NAME AND ADDRESS 32 PORT DATE
: -—~BEPOR
Higher Order Software, Inc. ~ 4 Ju 77
Cambridge, MA 02139 13 NUMBER OF PAGES e
132 T

14. MONITORING AGENCY NAME & ADDRESS (/f different from Controlling Office] 15. SECURITY CLASS. fof this repdrt) —
. Army Research Office Unclassified

Research Triangle Park, NC 15a. DECLASSIF(CATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

£344 v “v.—‘:
oy 7
17. DISTRIBUTION STATEMENT fof the abstract entered in Block 20, if different from Report) N e
7 \.'\‘o'""
s Ay -
N f{ i
.
{ - ws
L
8. SUPPLEMENTARY NOTES ; / {J
. e

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Operating Systems, Machines, Formal Methodology, Axioms, Control Strutures,

Data Types, Resource Allocation, Security, System Layers.

20. ABSTRACT /Continue on reverse side if necessary and identify by block number)

ABSTRACT: One of the most difficult problems facing system designers is that
of resource allocation to a particular machine. In this report we discuss the
basic concepts of resource allocation to, by and from an operating system and
the techniques of describing these concepts in terms of the HOS specification
language, AXES. We show here that Higher Crder Software (HOS) systems (includ-
ing operating systems) are secure. The 'HOS/AXES concepts are demonstrated by
example specifications of an operating system which uses as a model the APOLLO

1512 116

FORM

po 1JAN T

1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE fivren Dats Enterec.

UNCLASSIFIED -

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enterec)

20. _on-board flight software system. The concept of a Higher Order Machine
(HOM), whose purpose is to replace today's intermediate machine layers
and communicate directly to an HOS specified system is discussed.

UNCLASSIF !

SECURITY CLASSIFICATION THIS PAGE (1i-o- Dot Enterer

L ST 7 AT T

HIGHER ORDER SOFTWARE, INC.

843 Massachusetts Avenue
) Cambridge, MA 02139

TECHNICAL REPORT #7

TECHNIQUES FOR OPERATING SYSTEM MACHINES

July 1977

Prepared for
Army Research Office
Research Triangle Park, NC

ACKNOWLEDGEMENTS

This report was prepared under Contract No. DAAG29-76-C-0061,
sponsored by the Department of the Army, U.S. Army Research
Office, Research Triangle Park, North Carolina.

The authors would like to express appreciition to Andrea Davis

and Gail Lopes for the preparation of this report.

&
<
£

o S

N

csemy e

B e e

i
%
M
\

Section

Section

Section

Section

Section

11

Il

1V

TABLE OF CONTENTS

OPERATING SYSTEM MACHINES WITH RESPECT TO
RESOURCE ALLOCATION

M. Hamilton and S. Zeldin

THE SOFTWARE SECURITY PROBLEM AND HOW TO
SOLVE IT

S. Cushing

SOME DATA TYPES FOR OPERATING SYSTEMS
S. Cushing and W. Heath

SOME SPECIFICATIONS FOR THE OPERATING SYSTEM
OF THE APOLLO GUIDANCE COMPUTER (AGC)

W. Heath

A HIGHER ORDER MACHINE (HOM) FOR HIGHER ORDER
SOFTWARE (HOS),

W. Heath

Py

.

Section I

OPERATING SYSTEM MACHINES
WITH RESPECT TO
RESOURCE ALLOCATION

by
M. Hamilton and S. Zeldin

!
’ ;
3
TABLE OF CONTENTS F
| . i
? Section Page |
1.0 INTRODUCTION. ittt tientieianioeennessasaessonennnnnnnss 1 f
2.0 BACKGROUND. -+« v vuueeetaeaaseee e eeeenneee e eeeneeennen 4 (
[
3.0 RESOURCE ALLOCATION. ...ttt riieneniiienrnnennnnnnnnnrroeananans 6 E
’ $e
4.0 SYSTEM LAYERS. ...ttt ittt iiieiiientineireeronaneonnnenann 7 -
5.0 THE IMPLEMENTATION OF A SYSTEM.....cciiiiiii i, 19 ;
6.0 THE SPECIFICATION OF AN IMPLEMENTATION OF A SYSTEM }.
WITH HOS i ittt ittt it ittt e s i i i enenananes22
’ 7.0 ANALYSIS OF THE AGC OPERATING SYSTEM........iivurenianvnn s 26 .
8.0 AXES SPECIFICATION TECHNIQUES.......otiiuiiitiinnnnnnnnnnanss 33 ;4
8.0 SUMMARY...... N 49
BN 20 6 <) ¢ U 1 51
) 3D = o3 [t 57
FIGURES
1. Definition Layers with Respect to Definition Machines....... 10
' 2. Description Layers with Respect to Description Machines..... 11
3. Implementation Layers with Respect to Implementation
Machines........oviviiiiiennn. A 9
4. One Viewpoint of a System Development Process (Today)....... 14
5. HOS Approach to Software Systems Development................ 17
‘ 6. Development and Execution of a System.............cc0covinnn. 18
7. Example of an HOS System Allocated to Execute on an
HOS Machine .veieiii ittt ittt e e inesnennnnns 23
8. System R as Viewed by Machine OS....... .t iiiiiirinnenas 24
9. An Instance of an OS Structure Definition................... 25
10. Top-Level Description of an Instance of the AGC
Executive Machine as Part of a Machine System............... 28
11. An Instance of the Waitlist Machine with Respect to the
Waitlist Machine Environment........... . coiiiniiiirniinrnann 29
12. Resource Allocation of Machines to One Implementation
Layer of AGC Operating SyStem.........ocvuiuiinriireneiennnnns 32
15. An Example of Abstract-Control-Structure Definition
Layers with Respect to AXES.. it iininnnnnn. 36
14. An Instance of the COJOIN Structure.........vvvvirarnanrnnnn 44

:
&

YT

1.0 INTRODUCTION

An operating system enables a user to share resources of a conputer system [1].

General characteristics of such a system include scheduling computations,
protecting processes from interfering with one another, accessing instruc-
tions and data, and measuring performance of the system. On one hand, an
operating system must interface with the user, while, on the other hand,
the operating system must interface with the computer itself. Changing
uscr requirements.often requires extensive modifications to such systems.
The specification for such a system must be designed so that such modifi-
cations do not imply a redesign. In addition, we must try to separate
those functions that directly interface with the hardware so that we can

minimize the effects of implementing the 0S design.

The determination of those functions which are to be system support func-
tions usually depends on such considerations as efficiency, convenience,

availability, habit, clarity, commonality, and clever programming.

It does seem advantageous, however, to choose system support functions
based on criteria which are more standard than those used in conventional
syvstems. That is, if methods were used that were not ad hoc, the pro-
perties of a system, both individually and relative to each other, could

be more easily understood throughout a given development process.

A proliferation of real-time tactical operating systems has been observed.
This observation has lead to the suggestion of a family of operating systems

by the Navy [2], and an operating system nucleus by the Army [3].

Attempts at standardizing layers [4] of a syvstem have been made. For
example, some HOLs do not permit the combination of HOL code with assembly
languzge code [5}. Even for the Apollo flight software, applications were
not allowed to perform 0S functions, interpretive code functions [6], man/
machine functions [7], or error recovery functions [§] without going through
the standard support functions [9]. For such reasons, many designers

have advocated hierarchical operating syvstem concepts [1C), [I1].

PR/, TR WA S

(RS

——————

A Higher Order Software (HOS) system is specified by hierarchically
grouping abstract control structures. Since each control structure is con-
sistent with the properties of HOS, any system constructed from groupings
of these control structures, not only is able to maintain interface cor-
rectness among hierarchical components, but, system characteristics can

be derived so that verification of such a system is a more reliable process.

An example of system characteristics for a real-time, multiprogrammed,

dynamic scheduling algorithm based on HOS principles has already been shown [12].

In this report, we are concentrating on the subject of operating systems
(0S) in terms of the methodology of HOS. This section discusses the basic
concepts of resource allocation, to, by and from an operating system,

and the techniques of describing these concepts in terms of the specifi-
cation language AXES. The second section discusses the concept of secure
systems. The third section discusses some general data-type definitions
‘for operating systems, two of which (time and address) are used in the fourth '
section. The fourth section provides example specifications of an operating
system machine which uses as a model the Apollo on-board flight software
system. The fifth section discusses a concept for a Higher Order Machine
(HOM) .

The intent of this project is several-fold. It is hoped, that from this
effort, people will have a better understanding about the issues of systems
design, and, in particular, about thé issues of resource allocation. We
show here 'that HOS can be used to define operating systems and that these
systems are, by their very nature, secure. Not only cén a machine, such

as an operating system be secure, but the user systems of that operating

- -

system can be secure as well, thus making a complete system definition

a secure one. The examples selected from the Apollo operating system are
intended to demonstrate the ‘techniques of HOS. The techniques shown here
can be used to define other operating systems as well as systems in general.
Our next step in the specification of operating systems is to take ad-
vantage of the many lessons we learned in the specification of the AGC
operating system with respect to machines in general in order to define

a complete specification of an ideal operating system as @ machine. This

2

t-2HZR ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-89()

B

=

———pee

will include the definition of more specific control structures and data
types for a family of operating systems. We have used more general HOS
control structures and data types for this prototype effort. But, it is
clear that certain of the operations defined here for the Apollo system
could be used as specification macros for operating systems in general.
These macros could then be selected from or added to at will from a library
of 0S macros. The HOM is envisioned to ultimately replace intermediate
machine layers (such as operating systems) and talk directly to HOS
svstems. The intent of the HOM is to adjust to a system design instead

of the system design adjusting to a machine.

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

Ep—

, 2.0 BACKGROUND

The choice of an operating system as a demonstration of HOS is quite
appropriate since it has characteristics we wish to demonstrate in de-
scribing the concept of aQ HOS machine. Our first task on this project

was to search for a representative operating system to use as a demonstration.

In this process, it occurred to us that the operating system we had grown

up with (i.e., the Apollo Guidance Computer (AGC) operating system) was a
more appropriate candidate to work with than others we had looked at.
The reasons for this decision are many: the AGC operating system had flown

successfully on several real missions to the moon and back and thus had a

few "battle" experiences of its own; we are familiar with the design of the
AGC operating system, both from many years of experience as designers and
as users of the system; the AGC operating system includes many interesting
operating system capabilities from the point of view of specification; the
AGC system was intended to be a secure system; the AGC operating system
appears to be more efficient than others we have looked at (it was forced
to be efficient in order that all the mission programs had enough time and
memory to perform their functions). In the context of the functions it
performs, the AGC operating system (or its derivatives, such as the HAL

run-time package [5] appears to be a simpler and more elegant design

(from both an algorithmic and an organizational point of view) than others
we have looked at and it is thus easier to work with when comparing the speci-
fication of such a system with its implementation; we know well the benefits

and the shortcomings of the AGC system.

We will not attempt to describe here the entire AGC operating system, but
rather we will show typical algorithms and data types which exist in the

AGC operating system machine. The emphasis, here, will not be how to de-
fine the AGC operating system, per se, but, rather, we wish to show a tech-
nique using portions of this system in order that we can use such an example

as an aid in describing other systems (including other operating systems).

This exercise has been an extremely interesting one from several stand-
points. Although we were once intimately involved in the AGC system, it

took a great deal of time and patience to revisit this environment. This

4
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

{

was mostly due to the fact that the AGC system was poorlv documented (al- {
though the documentation of the Verification and Validation (V&V) contractor
turned out to be better than our own (13]). Our only soiution, however,

for completely understanding the system (which included, by the way, our

own designs and our own coding) was to go back and pour over the original
code, which was very clever and difficult to understand. Fortunately,

the basic concepts upon which the code was based (which were powerful ones
from the standpoint of QS capability) were quite simple, and that fact made

it easier to reconstruct the pieces.

F The complete AGC operating system contains many capabilities. These include
scheduling of processes, error detection and recovery, 1/0 handling (in-
cluding uplink to the spacecraft and downlink to the ground mission control), 5
and multilevel display interfaces between the AGC and the astronaut and -
between the AGC and the ground. To handle its process load, the AGC opera-
‘ting system had several priority systems. In the software part of the AGC
we scheduled processes dependent on hardware interrupts, software job
priorities, and software task times. We will discuss here specifications
which have to do with the scheduling of jobs based on priority (Executive

system) and scheduling of tasks based on time (Waitlist system). Both of

PRIERS TUPAg

these machines (i.e. the Waitlist and Executive machines) handled all the

types of secure data that are necessary for asynchronous machines.

HIGHER ORDER SOFTWARE, INC. » 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

B

 “
E - . .
. L Vo a2 ey Y S o 3 u l .

3.0 RESOURCE ALLOCATION

One of the most difficult problems facing systems designers is that of
preparing a design to execute on a particular machine. This process

of preparing systems to communicate with each other is called resource
allocation. More subtle problems appear when we attempt to redesign our
system to fit a machine. Once having done so, we can no longer under-
stand our original design, since the resulting complexity hides the
original intent of the design with camouflages of implementation. We
not only cannot trace input and output throughout our system design, but
W€ are no longer even sure which input and output is relevant to our
original problem. To try to change such a system with a new system

requirement is a presumptous notion.

An advantage of an HOS system is that all input and output can be traced
throughout a given system definition. A second advantage of HOS is that
we can separate the data flow with respect to different layers of imple-
mentation. Such a feature allows us to look at only those system inter-
faces which are relevant at the time when they are relevant, and only at the
time they are relevant, in each step of a system design process. Thus

we are not forced to redesign one layer when we wish to implement that
layer on a machine or when we wish to have it reside dynmamically with
another process in the same environment. We often hear the complaint
from system designers about the problem of attempting to design a system
"top-down' and then being forced to add ''extra stuff" on a lower level

of the top-down design when resource allocation is addressed. This
forces an iteration of the design process in order to incorporate that
extra stuff back at the top and down through the top-down design to main-
tain consistency of the overall design. (Some designers merely add

that extra stuff without worrying about it because they don't know

what to do with it, except to say it came from some other system; but
then they lose track of its influence on their own system and the in-

fluence of their own system on other systems.)

In order to resource allocate a given system to a particular machine, it
is necessary to define both the system and the machine in such a way

that a change to one won't affect the other. It is also necessary to

!
}
l
;

define the machine in such a way that the users of the same machine only

affect each other when they are explicitly defined tc affect each other.

4.0 SYSTEM LAYERS

With the formalism of HOS, we define a standard set of objects and
characteristics of objects that should be described with each system as
well as a standard set of nomenclature that should be used in describing

these objects. We emphasize in our notation the clear separation of the

layers within one system or between systems. In particular, we take

great care to distinguish between an instance of a layer (represents one

performance pass of a system)* and a layer (represents all performance

passes of a system). We distinguish between communication within one

layer, which always represents the same instance, and communication between

layers, which takes place when an instance of one layer communicates with
an instance of another layer (e.g., real-time asynchronous processes).
_We emphasize the importance of separating the layers of a system develop-
ment. For example, we distinguish between (1)} the system and the defini- ‘
tion of that system, (2) the system and the description of that system, L
(3) the system and the implementation of that system, and (4) the system

and the execution of that system.

A machine is a system which executes another system. There are dedicated
machines, synchronous machines, and asynchronous machines. A dedicated '
machine always performs the same function. Thus the "mapping' of an AXES FUNCTION
could be viewed as a dedicated machine. A synchronous machine must only

execute one system to completion before another system uses that machine.

An AXES OPERATION could be viewed as a synchronous machine. An asynchronous
macﬁine may execute instances of more than one system before either system
reaches execution completion. Thus, an AXES STRUCTURE can be viewed as an

asynchronous machine (see Section 8.0 of this report for a discussion of

-

AXES control structure definitions).

The environment of a machine must be secure in that (1) a user should not have

to be concerned with any of the details that have to do with its execution,

*as opposed to a level which is a step of refinement (or more explicit

definition) within a given instance of a layer.

and (2) a user should not be allowed to have visibility into another user's

environment,

In an asynchronous machine there are several types of data, all of which
must be maintained as secure data throughout all instances of the machine,
These types of data include (1) temporary values which exist for one or

more users; (2) values from another machine with respect to the machine

itself as a user; (3) values with respect to the variables of the machine

itself; (4) values which are functionally related to a previous instance

of the machine for a given instance of the machine system; (5) values

which are functionally related to a previous instance of the machine for '
a given instance of a user and; (6) values which are functionally related

to a previous instance of the machine for a given instance of another machine.

The definition (dynamic state) of a system is equivalent to the formal]
semantics of a system. The description (static state) of a system is
equivalent to the syntax of a system. The implementation (static state

which includes a system, a machine to run that system, and the mechanisms

R |

necessary to relate that system to the machine) of a system is equivalent
to that same system ready to be exercised. The execution (dynamic 3
state which includes a system, a machine running that system, and mechanisms

which relate that system to the machine) of a system is that system being

i

exercised by a machine. !

Not only must we be aware of the types of system layers, but we also must

be aware of how many different definitions, descriptions, implementations,

and executions are possible or potentially possible for one system. Most 1
important, we must determine those states which are necessary and those

which are not only unnecessary but which are causing serious difficulties L
in the development of a system. In order for us to make such wise

distinctions followed by wise judgements, we must have available a means

for determining both the types and the nature and number of states

within each type.

Consider the process of determining the successive layers within a layer

tvpe as they relate to the evolving process of a system. Each of these

processes is much like the process of a writer relating his thoughts for

. 8
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-890+

0y

a reader to understand. Not only must he convey the information he wants
to convey, but he must also convey it in the framework of the reader [14].
Each successive layer is a level of refinement with respect to the previous

layer in that such a layer is more dependent on a particular machine. .

The first system definition (Figure 1) is a cloud* (or a very fuzzy
idea of a system). Each successive definition should be more explicit

than the previous definition, in that it is more dependent on a particular i

definition machine. The process continues until we think we have com-
pleted the most primitive definition of the system. Today, processes

of refinement (i.e., decomposition) are manual processes. i

mat e O

. The first system description (Figure 2) is usually a verbal cloud followed m
by statements written in English, some sort of 'pidgin' English, some
sort of so-called "specification" language, a higher order language (HOL),
an assembly language, and finally the primitive object code for some |
machine. Each successive description is more dependent on a particular

description machine. In the description process, the support layers

R

e

communicate with a system in its static state.

[

The first system implementation (Figure 3) is a cloud (i.e., output and
input), the algorithm '"machine'" that will produce the output from the
input, and the operating system(s) machine(s) which operate (s} the al-)
gorithms. Each successive implementation is more dependent on a particular
implementation machine. This process continues until we reach the primi-
tive machine instructions which are prepared to "run" the results of the

most recent implementation. _ ;

Finally, when we put together a system, we are ready to exercise that

system. In a typical multiprogrammed or multiprocessed system, for
example, many different execution configurations of that system are possible-- .
in fact, so many that we can't count them. In the execution process we

are‘concerned with systems communicating with each other dynamically; that

is, the objects of one system communicating with the objects of another 4
system. [;

* .
Bob Fitzwater has suggested the term, "cloud" to describe the initial i
stage of system development. '

(o]

HIGHER ORDER SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . {617) 661-8900

~—— T

(e3eg udppLH uMo sS3t sey autyoey yoel)
sautlyoey uoiltutyag o3 10adsay Yiim saakeq uoijiutiag ‘1 aanbt4

10

suonesadg _ \

SAIIWLG ! profg 11 onojg ,, \r\
j0 pA37 e | — — — —f|J0 uoneg

A lontijag yoydx3 8ol Hnax3 pnogy
101 dx3 1soN /-

INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-890C

HIGHER ORDER SOFTWARE,

— ol

(®3eQ uappiH umg s3L Sey aulyodey yose3)
SaULYIBY uoL3diadsaQ 03 323dsdy yitm suaakeq uotidiuadsag ‘2 aunbiy

19]quassy \
/
A SS820.4
lenuep
~~ X $$98904d
AN |enuep /
AN
// N /D
N
\ N
\ N
))
w ! | UL p—
9pog 19lqo || /| 9P0Y | /|Siuaidierg)) QS TgH /| Suoneo
$5890J -
aANIWIg |qQUIBSSY | 10H uueso::mm 15199dg Qcom___dwh_%comv q

i

(617) 661.8900

(e3eQ UBPPLH UMO SIL SeY BULYIEY Yde3)
saurydey uoijejuswa|duy 03 309dsay YIlM suakeq uoljejuswaldw] ‘¢ a4nbLy

12

swyloby [~ <

—
o
o

o

+uny
0} Apeay,,
SO Eoﬂ:m%o juapuadapuj swyjobjy Spnoj) pnojo

-.un \ uny .
0} »umﬁm._ \ 0} Apeay,, o) Apeay, | | 0/1)

7
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE. MASSACHUSETTS 02139 .

Sometimes the need for the definition of the layers of a system depends on
how the system is to be developed and executed. One project might wish to

compile source code before a target system is ready to be executed.

Another might wish to interpret the code in real time. Thus, not only
must the layers of a system be determined, but the manager must also

determine when, how, and where their transformations take place.

No wonder we are all confused! Not only are we not aware that such pro-
cesses exist (or states within each process), but we also do not know
how to clearly separate these processes. A case in point is the manner

in which most designers conceptually view the development process

. of a system (Figure 4). Not only do we start with a cloud, but more
often than not, some part of the cloud remains throughout the develop-
ment process. In fact, sometimes the cloud becomes increasingly larger
as we proceed to the final deliverable. Once, however, we know how to
_make layer distinctions, we can take advantage of such a method to make

visible the development of all the components of a system.

Once we are able to define layers explicitly, we will be able to take
advantage of more simple concepts for layer communication as opposed to
ad hoc methods we apply today. With HOS, we think of layer communication
as being one of resource allocation (or assignment). That is, one layer,
with respect to another layer, assigns a name to a value or a value to

a name. Resource allocation also includes the ability to replace a name

by an equivalent name or a value by an equivalent value. Sometimes one

layer is produced from another layer by a third layer. Sometimes the
description of a layer, as opposed to the layer itself, becomes the ob-

ject of communication.

The general concepts of layer communication can be related to familiar 1
: examples. When two asynchronous processes are in the execution mode,
a value from a given process is assigned to a name (or variable) associated

with another process. Conversely, that other process assigns a value

to the name associated with the first process. When an integer is im-
plemented, a specific representation (or value) for a specific machine
is assigned to the name representing the integer. When a compiler com-

piles an HOL program, it assigns names (or registers) to values in order

N 13

HIGHER ORDER SOFTWARE, INC, « 843 MASSACHUSETTS AVENUE « CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

9p0J

(Aepo)) ssad0u4d Juswdo|aAdq wd3SAS © JO JuLodmatp auQ

ubisaq

A

po|te1ad

ubisaq

‘g a4nbr4

A

wa|qo.d
aurjaq

pnojiy

14

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - {617) 661-8900

to translate from one description to another. It also fulfills an im-
plementation function in that operations and data are replaced with
specific machine-dependent values. A compiler, in order to operate on
an HOL program, must be able to read the description layer of the pro-
gram as input for the translation process. In addition, it requires
further input of its own in order to provide the implementation layer
of the program. An OS system has a more complex job in that it is
usually required to communicate with both the description of a system
and the system itself. When a function is refined to a lower level of
more detailed functions, the -control integrity of the values and names
from the parent layer must be maintained at the layer of the offspring.
The layer relationships are defined in HOS with the use of universal
operations, or, alternatively, with the WHERE statement in AXES.
Several observations can be made from analyvzing Figure 1-3:
(1) some layers may be unnecessary (for example, why do we need 5
*so many description layers in order to talk to the primitive !
machine); (2) if we truly could make self-contained machine layers,
we could transfer a system from one machine to another machine at the
same level of detail. (Thus, for example, an integer data type could be
moved from one machine to another if it were expressed simply as an
integer, I. However, once it has been further specified to be on a
particular machine, we then would describe such a data type in terms of -

its next machine level, i.e., 1 At this point the integer

Machine X~
can only be moved from a machine to another machine with the same archi-
tecture as IMachine_X') (3) We could develop individual machines in-
dependently; (4) we should be able to define levels more abstractly
in-order to hurry the process of getting to 'the bottom'" of a system;
(5) we can tell from all of these various states that there is a natural

breakdown for management milestones, whereas today, many of our mile-

stones are not only not too well defined--they are not defined at all. ﬂ:

If we compare our methods of developing systems today with ideal methods,
the contrast is overwhelming. Let us not despair, however, for a look

into the future will help us to head in the proper direction. Ideally, ‘
we want to be able to define, as abstractly as possible, a system first, E;
describe that system in a syntax we can all relate to, verify that descrip-

tion, implement that system for a machine that will talk directly to

: 15
. HIGHER ORDER SOFTWARE, INC. - 833 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . {617} 661-8900

'rIIlIllllIIlllllI!lIlllllIlllIllllIIIIllIlIllIIlI-lI!F"F-"'!!!lllll!l!&!!!!!!!!!!!!:—_—__.m‘

that system, and collect the machine mechanisms, and only those mechanisms,
that are necessary to execute a given system (Figure 5). In such a way

we can eliminate dependencies on a particular primitive machine until the

very end of a development process. For when we go from one definition
to another, from one description to another, or from one implementation
to another, we are really resource allocating to only the next machine
level. Thus, there is no need to resource allocate for more than one

given level at a time (Figure 6). b

This allows us the greatest freedom in (1) developing modules independently;

(2) transferring modules from one '"machine' to another ''machine'; (3) making

changes to requirements in one module without changing another module;

(4) eliminating manual processes (i.e., each manual machine in Figures 1-3
represents a possible process to automate); and (5) eliminating redundant
or unnecessary steps. Most important, we have the freedom to change our

minds!

1o
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

-

10103]]0)
yum (NOH)
auIyoRW J3pIQ
13YDIH 193]|0)

3uBWdO A3 SWIISAS a4em3jo§ 03 yoeouaddy SOH G 24nbL4

1Y
UM 3)e90] |y

921n0SaY

19zAjeuy
HM
azAeuy

SJUaWaje}S

_S3XY UM
wajqo.id auag

pnojj

+ (617) 661-8900

843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139

HIGHER ORDER SOFTWARE, INC. -

S19Ae U01INJaX3 =

(19zAjeuy “b°9)

wd3IsAS © JO UOLINOIXJI pue quaudo|arag 9 dunbi4

BUIYOBRI dANIWIL] = YIBW
SO juapuadaq-auiyoepy = SON
SO Juspuadapu)-auiyoeiN = SO AIN
swyi0b)y waysAs jebiey =y
0/1=X

JINAOW A¥YHEIN INIHOVIN 1394HVL

i

siafe] uonngaxy =

swa)sAg uoddng

SwaIsAg poddng awii|-jea

alli | -|eay-uoN
auiyoey 1abie)

aulyoe\ 19bie]

18

843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139

o
(=4
o
s
—
O
Ot -
—
~
-
0,
—
.

HIGHER ORDER SOFTWARE, INC. -

5.0 THE IMPLEMENTATION OF A SYSTEM |

Looking back on Apollo, hindsight shows us that we had candidates (con-

ceptually, that is) for several different machines, although we did !

not view them formally as layers at that time and we did not always
correctly separate them as layers. Some machines were lower than others
in that they were closer to the primitive machine which was the AGC
itself (although the internal logic of the AGC could be viewed as still
a lower layer in the system). Guidance, for example, was a higher
machine layer than the operating system which scheduled it, but the
operating system was a higherAmachine layer than the AGC which scheduled
it. Other machines (two asynchronous processes communicating with each
other) were on the same level; that is, an instance of the layer of one i
machine communicated with an instance of the layer of another machine

on the same level as an instance of a third layer. In such a case, we !

say that two or more systems intersect at a third system. Each inter-

- -y -
taman. s

PRTS SrS

section is an instance with respect to a machine structure which per-
forms their communication where that machine structure is one of the
communicating systems. Thus, each system takes turns being a machine

for the other.

In the AGC, guidance, navigation, and vehicle control were examples of machine
layers which could intersect with each other on another layer. Other

less obvious communications (e.g., I/0 processing and AGC self check)
communicated only in the sense that there was an ordering relationship.

In this sense, such processes from the standpoint of a higher layer are
independent, but from a lower layer are ultimately dependent, since one

is élways more important than the other. Together these layers executed

in an asynchronous environment in that a higher priority layer could inter-

rupt a lower priority layer and they could execute with their own defined ﬁ
major and minor cycles. In addition, there were several other lavers

(this included up to eight systems scheduled based on software priorities

up to nine systems scheduled based on software times, and up to eleven ‘
systems scheduled based on hardware priorities, all of which had possible

asynchronous relationships for a given instance of a complete AGC system layer).

19

[
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

gl |

S

When we define a system that is to be executed, that system definition is

not complete until we define its state, the change of its state, and the

machine that will execute its change of state.

Whenever we want to separate a system from its execution, we create one

layer for the system and another layer for the machine that runs that

system. Likewise, that same machine can be looked upon as a system with
respect to the machine which executes it. This process continues until
we arrive at the layers of the primitive machine. Consider potential

resource allocation steps for System S where

STEP 1 (determine system): 1i.e.,
S is System

STEP 2 (determine I/0): i.e.,
S

*
WHERE S ON (xl,xz)

STEP 3 (determine algorithms): i.e.,
(xy5%5)
WHERE (xl,xz) ON F

STEP 4 (determine 0S): 1i.e.,

X, = F(xl)

WHERE F ON Executive

STEP 5 (determine computer): i.e.,
Estaten = Executive (Estatel)

WHERE Executive ON AGC

STEP 6 (computer): i.e.,
Cstaten = AGC(Cstatel)

*
WHERE A on B is an AXES statement that means A executes on Machine B
and the execution of A represents an instance of Machine B.

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 07*39 . (617) 661-8900

e LT

et I
- ——iEaa

PR

Here we have six different layers for System S. 1If we want to

move F to another operating system, we change Step 4 to name a new 0S for
F and replace Steps 5 and 6. If we wish to design a new algorithm for
the same computer, we change Step 3 and replace F with a new algorithm
and then replace Steps 4, 5, and 6. If we want to move to a new computer
and our operating system is independent of its computer (as it ideally
would be), we can change Step 5 to refer to another computer and we then

can replace Step 6.

21

1 8 '
HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900
- : L o ‘ ’ e I |

¥

6.0 THE SPECIFICATION OF AN IMPLEMENTATION OF A SYSTEM WITH HOS !

In order to implement a system, it is desirable to adhere to the following
requirements: the users should not be aware of each other's secure data

or each other's timing; a change to one user should not unintentionally
affect the other; a change to a user should not affect the machine that
executes that user; a change to the machine should not affect the users
which will execute on that machine, and the user should not be aware of the

machine's secure data or timing.

A system defined in HOS has all the necessary information for a machine

- to use in executing that system., Consider System R (Figure 7) as an
example of a system which has been defined to execute on machine 0S. ;
If we view the HOS machine, 0S, with respect to System R from the point
of view of the order in which that system is to be executed, the relevant f

information of System R to the 0S would be that which is shown in Fig. 8.

In System R, R is specified to invoke A and B. It is clear from the control "
map that the process B must precede A since A needs B's output to execute.)
Similarly, A controls C to precede D, since D needs C's output. Thus

the OS machine would assign a higher priority to B than A and ‘a higher

priority to C than D. R, as a controller, is assigned a higher priority

than B; and A, as a controller, is assigned a higher priority than C.

Although the offspring of C do not depend on each other for inputs, C
controls G to precede F which precedes E. In addition, E is controlled
to start in AT after F™. Here G is assigned a higher priority than F
and F a higher priority than E in that they must execute in this order if

they are in the same processor, although if C were in a multiprocessor,

Eaded

functions E, F, and G could run concurrently as long as there were suf-
ficient processors available. F controls I or L to be scheduled in AT1
or AT2 with respect to the time of F's invocation. In this case, only

one of the functions would be executed by O0S.

*EAT would be defined by an AXES STRUCTURE definition.

22
HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

- -am——

= R(x)

Nre R on 0S

= A(g) = B(x)

N

= D(h) = C(g)

h3-

Figure 7.

N

Epr(es) = Flgy) h; = Glg,)
g2<10 g,>10
h, = (g h
2 2 h, = AT (g5)

Example of an HOS System Allocated to Execute on an HOS Machine

23

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 . (61 7) 661-8900

s s

Sy -

v

Satl s

oy

=

<G
AT

Figure 8. System R as Viewed by Machine 0S

S)
.

~IGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE .

CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

Py . . s - ’
St ic 4 : DAl ¥

— ~en o e emae -

C

HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

In the above example, if one wanted to change to another operating system,

we could do so by simply changing the WHERE statement (for example,

WHERE R ON OS1 or WHERE R ON HOM). A change made to any part of System R
does not affect System 0S. Conversely, a change to System O0S does not
affect System R. The scheduling of the functions in System R are completely
managed by the 0S machine. Thus, ordering considerations as well as data
with respect to execution are completely invisible to the user. In
essence the control map of the userserves as all the necessary information
to the machine to carry out its execution (i.e., the order in which the
functions are to be performed can be determined by the machine receiving
as input the nodal families of a system (c.f. Appendix). The 0S machine
is an AXES STRUCTURE where each instance of that STRUCTURE is analogous

to an instance of execution on the 0S machine (Figure 9). In this figure

the universal operation K defines a particular constant operation

FNAME
where a valuz for "FNAME" is supplied by the user (c.f. Section 8.0 of this

report).

state2 = OSl(statel)

where OS1 on computer

state, = Run(nodjs_family,statel) nodal family = KFNAME(Statel)
/ N\
/ \
/ \
/
Y \

Figure 9. An Instance of an O0S Structure Definition

This example is oversimplified since it does not show the recursive
natdre of this machine (c.f. Section 8.0 in this report). In addition,
in a real machine we would need a mechanism to turn the machine on or
off, provide error detection and recovery, snapshot and rollback, and

redundancy management.

25

.

-

i

N

—

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE,

7.0 ANALYSIS OF THE AGC OPERATING SYSTEM

In the AGC operating system environment, there were several different
priority systems (machines) used by the users and managed by the users
with respect to interfaces between each priority system and within each

priority system.

The Executive schedules processes based on priority. A higher priority
means that if two processes are scheduled at the same time, the higher
priority process is given precedence over a lower priority process. The
Waitlist schedules processes based on time. Thus a process scheduled
for an earlier time would take precedence over one scheduled to take
place at a later time. In the AGC, a Waitlist process scheduled for
immediate processing takes precedence over an Executive process scheduled
for immediate processing, i.e., Waitlist processes could interrupt*
Executive processes, although there was an exception when the Executive
interrupt structure inhibited other interrupt structures**. The AGC
allowed an Executive scheduled process to inhibit interrupts and then

to release such an inhibit. The instructions which could execute
between an INHINT and RELINT command in the AGC are analogous to the
"critical sections" concept mentioned in the work of Dijkstra [10].
However, such an operating system, the earlier operating system (i.e.,
the AGC), had a mechanism which prevented deadlock (i.e., the INHINT

mechanism and RELINT mechanisms were hidden from the user).

The AGC Executive uses the starting address of a process and its priority
as input. The AGC Waitlist uses the starting address of a process and
its "time to go'" as input. In order to show a complete specification

of the AGC operating system as a machine, we would need to show all components

In the AGC an interrupt was either an exchange of a temporary program
counter and an active program counter or an exchange of a program
counter from one priority structure and a program counter from another
priority structure, i.e., (PCZ, PC,) where "PC," and "PC," represent
values. (See XCH operation descri%ed in Section 8.0 of this report.)
**The Executive could inhibit all interrupts except that interrupt which
overrode all other interrupt systems. This interrupt was used for emergency
situations.

26

MASSACHUSETTS 02139 . (617)

U v < ommn T R PR e B g AR < n

£ Ty

661-8900

s

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

—

of the AGC operating system and their relationships to each other.

The AGC operating system, likewise, could be viewed as having machines
of its own. For example, the Waitlist is a machine and the Executive
is machine, and these machines both talk as users to the AGC itself.
We have not attempted to show here all of these interrelationships,

although it would be a very interesting exercise to do so.

In Figure 10 we show a description of an Executive system as a machine
similar to the top-level Apollo Executive system. The Executive had
several different types of scheduling functions. These included Findvac
which scheduled jobs with larger memory requirements and Novac which
scheduled smaller size jobs; Spvac was used to schedule larger jobs with
a special size address; Endofjob was used to terminate a job; Priochng
was used to change the priority of an already existing job. Jobsleep
was used to change an active job in the queue into an inactive job in
the queuc. Jobwake was used to activate a sleeping job. Changejob

was used to check for a higher priority job and thus served as a de-

tector of possible interrupts.

The problem with this Executive was that the users, themselves, decided
which Executive function they needed, instead of the Executive machine.
In addition, the user, instead of the Executive machine, decided which
priority to use. In both cases, an Executive machine would be much
more qualified to determine these parameters since it has all of the in-

formation of the other users available that the user does not have.

The Waitlist system (Figure 11} had more subtle problems for the:user to
worry about. For not only did the user have to worry about coordinating
his own timing with respect to other users, but he also had to be aware
of the behavior of the Waitlist with respect to its own machines and with

respect to the interfaces between these machines.

Not only did users of Waitlist have to coordinate themselves with each
other and users of the Executive had to coordinate themselves with each
other, but these two sets of users had to also be coordinated by the users
themselves. Thus the users had to coordinate other users of the scheduling
mechanisms as well as be aware of how these various mechanisms interfaced
with each other. They, therefore, had to coordinate themselves with respect

to both svnchronous and asynchronous timing aspects of their environment.

27

it

wo3sAg ouryoey v jo
j1ed Se SUTYODR 9ATINDAXY DYV Yl JO 9dUBISU ue jO uot3driosaq [aas7-dol ‘01 @an3ry

Nlyasn quanm

i

$YIINNOD WVYD0Ud ¢ SSHYUAQY ‘ ALIYWOIYd
«NI NI

NLyqinnod wvaoodd Manand Nyovasova = Nawvis auaum
<100y 1 NN0D Wvaooud 10040440 MOy avisova = MO31vis auanm
$YALNNOD WVYOO0Ud = Jd FYTHM
(1)9NHD014d=0 (1)JVAON=0 (1)9orang=o (1)90Ld9NVHI=0 (1)d3418490r=0 (1)IAVMLOr=0

sosn ‘Nlgivis)aarinoaxa 1M04yv1s

M I o — o

AZH «NI

1

(I1)OVAANIJ=0

28

HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 .« (617) 661-8900

R

P
U = ¥Llajy)
COJOIN
q, = WL.(q._,Task_,) Task, . - = Kq (q;) i
0 1Yn timep- timep. ft in ‘
COEITHER WHERE %L, ON mPC, machine

q, = WL {(q.) q, = Entertask(q ,Task_.) ‘
0 2N peant, 0 in time” | pc=Entertask 5
COJOIN ’
3
= Y ‘ ? - = "
q, = Taskoverrt(qo,rn.) qq Tt,Tn? = T3Rupt(qin) '
WHERE Taskoverrt~0N PCl machine WHERE t3Rupt ON Hardware ?f

User
COEITHER y = £f.(x) o
WHERE ft on WL
9 = 9in q = Whp(ayy).
| rt=REJECT | rt#REJECT

iadl

Figure 11. An Instance of the Waitlist Machine with Respect to the
*Waitlist Machine Environment

29

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

Vi
b
!
i

Consider the following Apollo scenario:

: * ‘
(1) User A schedules B at priority 10 . i
(2) User A schedules C at priority 20. :
(3) User A schedules D in 2 seconds.
(4) B schedules itself at priority 12 for the next cycle in 10 seconds.
(5) C schedules D at priority 21 for the next cycle in 1 second. .
(6) User A was scheduled by another process at priority 5. i:
(7) B changes the priority of C to priority 9.
{8) C puts B to sleep. =
(9) A wakes B up. ;i

From this scenario, it is first of all very difficult to know without

quite a bit of analysis if all of these schedules make sense, but in]

examining them further, we see there aremany latent problems here. And, o 3
in fact, many of them happened sometime in the development process of

Apollo. Examples**of these potential problems are:

(1) User A losescontrol due to scheduling B at a higher priority 3
then itself. X

|
|
z (2) B may not finish before another B is processed. Then we have]
F B conflicting with itself.

(3) B has made C be less important but this violates A's original intention.

(4) None of these users are guaranteed that all the priorities under
A's control are correctly related.

(5) A different 0S function is called to schedule timed processes than
the one used to schedule priority processes.

(6) A different 0S function is called for scheduling different kinds
of priority jobs,

(7) A change to one process priority could undo its originally in-
tended relationship to other processes.

(8) B, C, and D terminate without A knowing it. 2

(9) A is not aware of other schedules within A's system environment.

*Lower numbers indicate lower priorities.

**An exercise is up to the reader to discover other problems here.

30

HIGHER ORDER SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

2

Using HOS design, the following would have happened:

WHERE A ON machine |

(1) A controls the priorities of B, C, and D with respect to each other.

(2) A always has a higher priority. than B, C, and D.

(3) None of these functions can control themselves. .
{(4) Only A can invoke B, C, and D. |

(5) One machine would be used to coordinate the scheduling of all]
processes in System A.]

(6) The machine would maintain relative priorities and thus prc ride
for automatic reconfiguration.

We discovered more explicitly the problems of the AGC operating system
by attempting to have an HOS type user such as System R (Figure 7) inter-
face with supposedly more than one machine (i.e., different parts of the
AGC operating system) where these different machines should have been
coordinated by only one machine with respect to the user. In Figure 12,
we show a resource allocation of System R to the AGC machine environment

as it existed at the time of Apollo.

In this case, R, A, C, D and F are scheduled on the Executive; I and L
are scheduled on the Waitlist; B and G are implicit calls; and E .is scheduled

by a hybrid (i.e., Delayjob which contains an Executive and Waitlist mechanism

to schedule a job in AT seconds).

This example does not demonstrate all the potential interface problems
since in the AGC the schedule statement also includes scheduling infor-

mation such as absolute priority. This exampl: shows only the Waitlist

and Executive as machines and not any of the other machines which existed

in Apollo. But, it is clear that there is no mechanism in this example

to coordinate both the timing of the users with respect to each other

and the timing of the users with respect to the interfaces between the

Executive and Waitlist.
31

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

i

= R(x)

where A on Executive !
1
1

A(g) = B(x)
4
1
///////////A\\\\\\\\\\\\ Where C and D on Executive '
= D(h) = C(g)
Where E on Delayjob* 2
Where F on Executive I

h, = Eprp(g3) = Flg,) = G(gy)
Where I on Waitlist ' ;‘
Where L on Waitlist .
|

= IAT (g5) h, = LATZ(gZ)

Example I2. Resource Allocation of Machines to one Implementation
Layer of AGC ‘Operating Syvstem

*Delayjob contains an Executive and a Waitlist
mechansim to schedule a job in AT seconds

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

3

X

8.0 AXES SPECIFICATION TECHNIQUES

AXES is a formal notation for writing defiritions of systems. These sys-
tems include systems which are mechanisms for defining other systems.
Thps, for example, we could define a set of specification "macros" which
collectively could form a language for defining a system or family of
systems. Since each language statement would be a definition '"macro"
based on an integrated HOS control hierarchy, the resource allocation

to a particular machine could then be addressed independently from the
definition of the system. Although it is rot a programming language,
AXES is a complete and well-defined language capable of being analyzed
by a computer. AXES is intended to provide commonality between systems.
Although users will have flexibility to choose different building blocks,
these building blocks, when ''compiled,'" will be brought to a common

meeting ground with all other users of AXES.

The syntax of AXES {15 provides the mechanisms to specify control struc-
“tures and data types. The purpose of AXES is to be able to express a
system specification which is equivalent to that same specification ex-
pressed graphically as an HOS control map 6. Control structures have
three forms in AXES: structures, operations, and functions. Whereas a
structure is a relation on a set of mappings, i.e., a set of tuples whose
members are sets of ordered pairs, an operztion is a set of mappings which
stand in a particular relation. An operation results, mathematically,
from taking particular mappings as the arguments (nodes) of a structure,
By a function, we mean a set of mappings which stand in a particular rela-
tion for which particular variables have been chosen to represent their
inputs and outputs. Whereas structures and operations can be described

as purely mathematical constructs, a function is a hyBrid, consisting

of a mathematical construct and a linguistic construct, i.e., an assign-
ment of particular names of inputs and outputs. Note that our use of
"function" is slightly different from what is meant by '"function" in
mathematics. For the latter notion we use the term "mapping'" throughout

this paper.

In AXES, a new data type can be defined sizply in terms of the operations
that are to be performed on the data (5. The primitive operations are

not defined in terms of other operations, -ut in terms of each other.

(3}
[

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

I T
PPN SV

That is, a data type is defined algebraically rather than operationally
by making true statements (or axioms) about the equality of two control
structures in which all the nodes are operations. Each such control

structure is defined in terms of primitive operations of the data type

of interest or of previously characterized primitive operations of another

data type (previously characterized primitive operations include universal

primitive operations that have been defined, each of which is associated

with any member of any data type).

The axioms associated with the definition of a data type are only those
we need to characterize the data type. There are, of course, other
operations that we find useful for other purposes. We are free to define
any operation we want on an already-defined type as long as the operation
definition is consistent with the axioms of the type. A new operation
can be characterized either as an OPERATION or as a DERIVED OPERATION.

In AXES, we specify the behavior of an operation without specifying

-~

its decomposition by writing it as a derived operation, i.e., by means

A

of true statements that describe the behavior of the operation with

ey
Ak

Fs

respect to other already-defined operations. Either kind of operation
could be written as a control map, if desired. They differ in how they
are specified, not in what they are. What distinguishes both of these
kinds of operations from primitive operations on their data type is that
their existence is provable mathematically from the existence of the
primitive operations and the axioms of the type. In fact, if an OPERA- .
TION (which defines a function) and a derived operation (which defines the

behavior) are both used to define the same function, the behavioral pro-

perties can be checked against the refinement properties to prove the

correctness of a definition.

In describing AXES we will use variables and constants themselves to L
make statements about the values they name, and we will use the names
of variables and constants to make statements about the variables and

constants themselves.

34
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

s,

f To differentiate an object from its name, we introduced the 'use-mention
distinction' [I7] in AXES {13§. That is, we can talk about an object

q only by using a name of the object. (To talk about a man, for example,

- we have to use a sentence that contains the man's name, not the man

himself.) The notation conventionally used for this is enclosure within

quotation marks. To form the name of a given name (or written symbol

of any kind), we include that name (or symbol) in quotation marks.
(Successive embedding of quotation marks can be used if we want to talk

about names, names of names, and names of names of names.)

In AXES, a constant symbol is the name of a particular value and cor-
responds to a proper noun like '"John.'" A variable is the name of more

than one possible value and corresponds to a common noun like "a man."

For example, in Figure 13, the top-most box is a description of part of
AXES itself. The top-most box describes the AXES objects required to
define a STRUCTURE in AXES. The sentence

HSTRUCTURE:H y Mot S H(H X H)ll;ll

makes a statement about values by using the variable "y'", 's', and "x"
and about constant symbols by using the quotation-marked symbols such as |
"*STRUCTURE'', and ''='".

The middle box encloses an AXES object itself; that is, the middle box

énclosés the definition of a language statement derived from the defini-

tiop of an AXES module. The Composition (Cn) STRUCTURE, defined in

Figure 13, is one of the three HOS primitive control structures. Each !
primitive control structure has been uefined as a STRUCTURE with AXES [13*.

The middle box entloses an instance of the layer that the top-most box

*The syntax for set partition is
2y = £,("x) OTHERWISE %y = fz(zx);
WHERE PARTITION OF (x,y) IS ANY PARTITION;

Here, the left superscript indicates a member of a member of a partition of
"x". The syntax for class partition is

Yy = fl(xl) INCLUDE Y, = fz(xz);

35
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (61 7) 661-8900

“STRUCTURE:" y =" S “("x"):"
declaration. .

definition. . a STRUCTURE
“SYNTAX:" user -defined syntax ;" /4 Ot
“END” § * y description
STRUCTURE: vy = Cn(x):
WHERE x,y,g ARE OF SOME TYPES; |
y = Cn1(g) AND g = Cny(x); ;
SYNTAX: y = Cny(g) JOIN g = Cny(x); \a STRUCTURE
END Cn; | object

OPERATION: b = Contact (a,c);
WHERE a,b,c,d, are ACSs:
b = relate (d) JOIN

d = Supervisor (a,c); \a Cn object
END Contact:

Figure 13

An Example of Abstract-Control-Structure Definition
Layers with Respect to AXES

36

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-890:

represents. If we could describe all of the structures that could possibly j
’ i
exist, then the complete set of structures would be the layer that the

top-most box describes.

-__r“fg_
|
!
;
|
! When a STRUCTURE in AXES is defined, the designer supplies the syntax (or
; description) so that a user of that structure can describe particular i
mappings that stand in the relation. For example, the bottom-most box .
in Figure 13 encloses an AXES object that is an instance of the Cn struc-
ture described in the middle box of Figure 13; that is, the bottom-most
box is the definition of a system derived from the definition of a i
language statement, derived from the definition of an AXES module.
In the bottom-most box, "b = Relate(d)" describes a particular function
that "y = Cnl(g)" represents in the middle box. Likewise, 'd = Super-

visor(a,c)" represents an instance of ""g = an(x)". In the middie box,

gl

the objects that "y'", 'g" and "x" represent are described in the state-

ment

WHERE x,y,g ARE OF SOME TYPES; 3

This statement means that x,y, and g are variables whose values are of

an unspecified data type. In the bottom-most box the WHERE statement

is used to specify a particular data type, and the operation, Contact,

is a particular mapping.

Other control structures can be derived from already defined control
structures and operations that operate on variables of any type. Opera-

tions that operate on variables of any type are called universal opera- .

tions. Primitive universal operations are defined as- }

(1) x = Clonel(x)

.1‘)

(é) (x,x) = Clonez[x)

con ™)
. .2
ldl(xlrxz) '

(3) CON = K

(4) x

1
.2
(5) X, = 1d2(x1,x2)

(6) (xy,x5) = St(x)

(7) x = T(xy,x,)

&
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

(1) and (2) are used to specify more than one variable with the same value.
(3) is used to choose a constant symbol. (4) and (5) are used to select
the value of one of a set of variables. (6) and (7) are related by

T(St(x)) = x. These are used to create a value of a data structure from

a value of a data type (i.e., St) or to create a value of a data type

from a value of data structure (i.e., T).

Universal operations have as their bottom nodes, universal primitive

operations. The universal operations
b
y = 1d_(x)
- Y1:Y, = XCH(x{,X,)

y = Clonen(x)

are defined here because they are then used to define control structures

whose syntax is used to define the operating system functions in Section IV.

Universal operations are defined as STRUCTURES in AXES because they operate
on variables rather than values. The first non-primitive universal opera-
tion defined here, y = id:(x), is used to select particular variables

out of a set of variables.

STRUCTURE: y = I(x)

WHERE c,a,e,e ARE SETS (OF NATURALS);
1

WHERE b,d,j,p,m,a ARE NATURALS;

,a
2171

WHERE x, x,
1

WHERE (al,az) REPLACES a;

WHERE y REPLACES (Y1>Y2)3

WHERE (el,ez) REPLACES e;

y = Il(x,x,a) JOIN (x,x,a) = Iz(x);
14 14

(x,x,a) = I1 (x,x) JOIN (x,x) = Clonez(x);
14 223 23
38

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

oy

R

(8

as=s I1 (x) INCLUDE (x,x) = Clonez(x);
1.2 14 3
2
= \ - .
a 111 (e,b) JOIN (e,b) K(c,d)(;),
1,
a=1 (e,b,b) JOIN b,b = Clone,(b) INCLUDE e = Clone, (e);
1 2 1
1, 112 12
1,
a, = I1 (el,b) INCLUDE a, = 12 (ez,b);
1 11 1 1° 2
1 1
1 L
2 2
a. = K Le..,b) EITHER a. = id? 2(e.,b);
1 - "REJECT ‘S1° 1 1 81205
11 11
PARTITION OF (e ,b) IS
1
Y, ,b)|2>b,
1
?(e,,b) ash;
1
= K le ,b) INCLUDE a. = I, Z(e,,b);
35 T “REJECT 12’ A Ot
1
2

PARTITION OF (ez,b) IS
1

*(e,,b) |e, = REJECT,
1 12

%(e.,b)|e, # REJECT;
2 2
1 1
y, = I, (x,a) INCLUDE y, = I, (x,2,);
17y S

.21 2 ,
y, = id, (i.az) EITHER y, = I, Q?,az),

2

39

1

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

PARTITION OF (x,a,) IS
4 2 : |

1(x,a) |a, = REJECT,
4 2 2

?(x,a,) la, # REJECT;
4

i
E) JOIN c1 (x) INCLUDE 1 (2,)
y, = I (x,x,& X,X = one, (x a, = Clone,(a,); 4
% 2= 1Rl 2’8 24 32 1122 ,
- 1. Y(x,a.) EITHER y, = I, *(x,a,) EITHER y, = K 3x,2.);
"1 1 »349) Y1 7 42 234 1 = “Reject ‘X*1)e
: 1, 1 1, 1 1
1 1
PARTITION OF (x,a;) IS J
1
1 !
(x,a,)]a, =1, 3
PR Eis!
> 2,

2(x,ap]2y >
1

3 .
(?)al)lal = O,

S 1. (g) JOIN g = id® 1(x,a,);
1 1 1
1]

~
(oY
|

1

. .2 _ .
yl = 1d1 (gl’gz) JOIN (gl’gz) = St(g)g

. . 2 ,
yl Il (Z,J) JOIN Z,} 12 (;:al))

1 21

1

(z,j) = I12 ()Sc,alll,xs,az) JOIN(xs,eil,xG,a2)= Clone2(>1t,al);
2 .
11 ;
U
j = Il (x,al) INCLUDE zZ = IZ (x’al); .'
1 51 1 6 2 [
22 22 L
1 1 1

1 1

j =p-m JOINm = K, (x) INCLUDEp = Clone,(3) ;
1 5 1 1 ¥
]

.2 :
JOIN 31- id, (g,il),
40

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-890C
P . i.. i Wi e - i B o . e .- & 'v -

h.) = St(h) JOIN h = idf (x.2));

2
z = idj (h,h,) JOIN (h ,h, .8

SYNTAX: y = idg(X);

END I;

In the use of this structure, a value for (c,d) defines a particular KCON
operation which, in turn, is used to define the number of components of
"y" each component having the same value as the particular component of
"x'". For example, an instance of this structure is defined by replacing
the value of "c" by a set of integers, the value of "d" by an integer,
the value of "x" by a variable or set of variables, and the value of
_ "y" by a variable or set of variables. An instance of this structure

‘ might look like (e,j) = id?z 4 (&1,1,3,k). In this instance ve have

replaced "c¢'" by "(2,4)" and ad” by "S", which defines (e,b) = K((2’4)’5)

so that "e'" has the value ''(2,4)" and 'b'" has the value "5'". Here,
"y" would have the value '"(1,j)}'" and "x" has the value '"{g,h,i,j,k)".

* Note also that the definition is constrained so that each value of each

e+ em s empm s R

component of ''c'" must be less than the value of 'd" to assure that the choice

of values falls in the range of the number of variables available to choose

from. This is accomplished by specifying a particular component of "a"
to have the value REJECT if the value of that particular component is
greater than the value of "d". REJECT is a value which is a member of

every data type in AXES. Its purpose is to be able to specify error

conditions and to be able to recover from these errors within the specifi-

cation of a system.

Although the definition of y = idg(x) is quite complex (because we must
use here only primitive universal operations and primitive control struc-
tures) once defined it can be used to define other structures. In what

follows, the use of this structure is shown to simplify the definition of

other structures.

We can now define a structure whose syntax can be used to define more than

one system having access to the same value. Here, we use t“e universal

operation

y = ido(x)

41

i HIGHER ORDER SOFTWARE, INC. » 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8500

as well as the universal primitive operation
(x,x) = Clonez(x)

to determine the meaning of the relationship among the unspecified func-

tions that appear as bottom nodes of the structure definition.

STRUCTURE: y = J(x);
WHERE y,g,w,h ARE OF SOME TYPE;
WHERE b IS A NATURAL;
WHERE a IS A SET (OF NATURALS);
y = J,(g,w) JOIN (g,w) = J,(x);

(g,w) = Jl (x,x) JOIN (x,x) = Clonez(x);
212 12

J. (x) INCLUDE w = id:(x); |

g:
1 |
12 1 2 .
b
. ,b b
g = J1 {h) JOIN h = id_(x); :
c b
11 1 ‘
2
SYNTAX: y = J)(g,w) COJOIN g = J, (h);
1
1,

END J;

In using the syntax of a structure, an instance of the layer of the
structure definition can be obtained. In the COJOIN structure, there
are actually four unspecified mappings besides the top node: Jl’ Jl s
1
1

2
id:, id:. But in the use of the COJOIN, the value of '"w" and "x'" uniquely

determines the particular idz function. Likewise, the value of "h" and 'x"

=

uniquely determines the particular idE. Thus, only Jl, J1 need appear
1 i
, 12 .
in the syntax of the COJOIN definition. The collective set of values
that replaces the variables described in the syntax can be traced to each

node of the structure definition. For example, if

42

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900 ‘
- e g |

~

(a,b) = F(r,t,s;
is defined as !

(a,b) = A(p,q,r) COJOIN (p,c) = B(r,t)

The first and second statement collectively form an instance of the
COJOIN structure, as described in Figure 14. The arrows represent the

values of the variables of the COJOIN definition.

In this example, "x'" has the value "(r,t,s)"
"J'" has the value "A"

"y" has the value '"(a,b)"

..,_.,.___.-_.--_-_4

"g'" has the value "(p,q)"
"w'" has the value ''r"

"J ' has the value '"B" ;

and, since the input to F has three components, '"b'' in the structure
definition has the value "3", since "w'" has the value ''r'", which has one ‘
component, "a" in the structure definition has the value "1'", and so on. f'
The structure syntax names the objects necessary so that an instance of

the structure definition is obtained. Any instance of a structure must

itself be an HOS system.

In the COJOIN structure, systems that communicate with each other can
access the same value. Likewise, we define other structures, one so

thgt independent subfunctions can access the same value (the COINCLUDE),
and one so that subfunctions whose invocation depends on the value of the
controller’s input set need not access the entire set of variables of the

input set (the COEITHER). ,

STRUCTURE: y,,y, = COIN(x);
WHERE b IS A NATURAL;

WHERE a,c ARE SETS (OF NATURALS);

e

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900 ,

L

!1

(a,b) i / (r,t,s) 4
y = J(x)

. $

:

(a,b) i‘

Yy = J](Q,W) (Q,W) = Jz(x)
\ Al (r,t,s),(r,t,s)
(g,w) J] (x,x) X,X) = Clonez(x)
21 12

(r,t,s) i (r,t.s) E

(p.2) v g d B

Nog = J] (x) w = |da(x) -

|2 1 : + 2 .

1 A

(p,a) 3
\ —(r,c) E/

9=J, (h) h = ;dc(x)$££3t,5)

Y 7 1
B 2 (r,t) I .
(1,2)
Figure 14

An Instance of the COJOIN Structure

Radl

44
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

ncaclt .

WHERE x,v,g,h ARE OF SOME TYPE;

(y,>¥,) = COIN, (x,x) JOIN (x,x) = Clone,(x);
1’72 15 15 2

y, = COIN, (x) INCLUDE y, = COIN. (x);
1 1 2 2
- 11 12
| y, = COIN, (g) JOIN g = id(x);
l 1 1 a
: 1 1
; 1
, i b
y, = COIN, (h) JOIN h = id2(x);
2 1, ¢,

1

SYNTAX: y, = COIN, (g) COINCLUDE y, = COIN; (h);

L 2y

END COIN;

STRUCTURE: y = E(x); E

_ WHERE x,y,h,g ARE OF SOME TYPE;

PRI

WHERE b IS A NATURAL;

WHERE c,a ARE SETS (OF NATURALS);

y = El(lx) OTHERWISE y = Ez(zx);

PARTITION OF x IS ANY PARTITION;

y = E; (g) JOIN g = id2('x); 1
1 a

E(ZX); : B

= El (h) JOIN h
2

id

BN
I

SYNTAX: vy = E1 (g) COEITHER y = E1 (h);
1 2

END E;

™

Structures, in addit.on to the primitive HOS structures (e.g., COJOIN),
can be used to define other structures. For example, the WHEREBY, defined
with the COJOIN, gives us the facility to use constant symbols as operands ,?

of a function.

45

i
13
M

V HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900 [

STRUCTURE: y = W(x);
WHERE y,h,g,x ARE OF SOME TYPE;
WHERE a IS A SET (OF NATURALS);
WHERE b IS A NATURAL;

. ,b _ .
y = Wll(h,g) COJOIN h = 1da(x) COJOIN g = KCON(x),

SYNTAX: WHEREBY y = W, (h,CON);
1

END W;

The WHEREBY is used as in

y=x+1

Here, the constant symbol "1" defines the particular K operation that

CON
makes the instance of the WHEREBY structure a function. Note also that
the operator '"+'" is used as an infix operator. In AXES we are free to

use either prefix or infix notation, as desired.

Another example of a non-primitive structure, XCH, gives the capability

to exchange the input values of a function. 2
STRUCTURE: (yl,y2)= XCH(xl,xz);
WHERE Y1s¥psX{sX, ARE OF SOME TYPE;

Y a2 .
Yy = 1d2(x1,x2) COINCLUDE Yy = 1d1(x1,x2),

SYNTAX: (y;,Y,) = XCH(x,,X,) L
END XCH;

.
Often, in a system specification, more than two values of the same variable i

are desired. For this case, we define the universal operation y = Clonen(x):

46

Er——ereg

e

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

-

STRUCTURE: y = C(x);
WHERE (yl,yz) REPLACE y;
WHERE x,y,g,h ARE OF SOME TYPE; _ ;

WHERE m,n,p ARE NATURALS;

y Cl(x,m) COJOIN m = Kn(x);

c, l(x,m) EITHER c, 2(x,m) EITHER y = K

A 3 .
! Y= 1 REJECT (%oM)

PARTITION OF (xl,m) IS

1(x,m)[m =1
i ’ 2(x,m)]m > 1
!

3(x,m)|m =0

y = Clone, (g) JOIN g = idf Lox,m;

Yy = Clonel(zx) GOINCLUDE Yo =

I
(@]
N
[\)

—~

>

El
<
.o

¥, = €y (x,p) COJOIN WHEREBY p

1}
3
[

SYNTAX: vy = Clonen(x);
END C;

In this statement, the only unspecified function (other than the top

T SV P

node) is m = Kn(x). When this structure is used, a value for "n" defines
a particular Kn operation which, in turn, is used to define the number of

components of "y'", each component having the same value of "x".

R N S

We can visualize the instance of a structure as being either written

down on a piece of paper, by a human being, or to a register by a soft- L

ware or hardware process. .To check an instance in an HOS system, the

use of a STRUCTURE is compared with the STRUCTURE definition itself, by .
E an analyzer. All instances of a STRUCTURE can be viewed as being sup- :
' plied to the structure dynamically. The STRUCTURE for an asynchronous

machine system, such as an 0S or the Higher Order Machine (HOM), de-

scribed in Section V, is a recursive relation relating each state of a

a7

8
; HIGHER ORDER. SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

LR e

T

L T At e A A3 A, i i b o Sl e =

machine to a previous state of the same machine within an instance of
a machine system. To check the instances of an asynchronous machine in
a real-time environment, an analyzer is used to not only check the use
of the STRUCTURE with the STRUCTURE definition, itself, but also to
check to see that all the users of that STRUCTURE are consistent.

STRUCTURE: y = HOM(x);

WHERE B,A ARE NODAL FAMILIES;

1

WHERE HOM
: 2

IS A CONSTANT FUNCTION;
2 .
WHERE KA IS A FUNCTION;

WHERE x,z,y ARE OF SOME TYPE;

y = HOM, ! x) OTHERWISE y = HOM, 200
PARTITION OF (x,y) IS
1
(x,y) |x = REJECT,

Lix,y)|x # REJECT;

<
"

HOM(z) JOIN z = HOM, (2x);
2

HOM

(3]
H

(°x,B) COJOIN B = KA(zx);
2
SYNTAX: WHERE A ON HOM;

1

We indicate the potential happening of each machine instance by specifying
a user system to be "ON" the machine system, e.g., the syntax WHERE A ON
HOM specifies the initial nodal family of system A to be used by the

first machine instance and the nodal family for each next recursive
instance of the HOM function KA to be determined by the ordering relation-
ships of the nodal families within system A. A nodal family is a 3-tuple
whose members are functions which stand in a particular relation (c.f.
Appendix). By indicating only "HOM" in the syntax of this structure,
rather than, for example, "y = HOM(x)," the state of the HOM remains

hidden from the user.

48

HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 .« (617) 661-8900

s

b

hel

EpTE—T—

9 9.0 SUMMARY

With respect to the requirements for an operating system, stated earlier
in this report, the AGC operating system fulfills some of these require-

{ " ments (e.g., its data is hidden), but does not fulfill others (e.g.,

timing is not hidden).

When we began this effort, we thought there was littie in the AGC operating
system we could improve upon. This attitude was as a result of comparing
the AGC with other operating systems, the simplicity of the algorithms
in the AGC operating system and the fact that no errors occurred in several
years of development in the actual operating system itself. Upon looking

! ' back, however, we can now see that many of the development errors which
occurred in the user's environment would not have occurred if the AGC

operating system had the additional advantages which we discussed above.

XTI

49

£ .
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

- -

-

Appendix
A FORMAL OUTLINE OF HOS

In HOS, the decomposition process for a system resuits in a tree structure.

At the start of the decomposition process, the entire system is repre-
sented by the root of the tree which hopefully, represents the require-
ments for the system. This definition, however, has many implicit
(hidden) requirements. In order to arrive explicitly at the complete
definition of the system, the root is decomposed by replacing it with a
nodal family (a particular parent node and all of its offspring), which
represents the decomposition of the root. This decomposition process,
that of replacing a function by its nodal family, can be continued until
the entire system has been specified. The resulting tree represents the
complete system specification where the leaves represent prinitive opera-
tions on the data types represented by the variables at those leaves.

It may turn out that during the decomposition process a requirement is
.shown to be erroneous or missing. In such a case, an iteration of the

system description is required.

The parent ﬁode of the nodal family controls its offspring. When refer-
ring to this control relationship, the parent node will be called a
module, and its offspring will be called functions. The offspring of the

nodal family are the functions required to perform the module's corres-

ponding function (MCF)(i.e., the function that the nodal family replaces).

In the sections that follow, the variable that represents the domain

elements of a function is referred to as the input variable, and the

variable that represents the range clements of a function is referred to

as the output variable. Individual domain and range elements may be

called inputs and outputs, respectively.

A module, in performing its corresponding function (FigureA -1), is
responsible for determining if the inputs received are in the intended
domain of the MCF. If an input is not in the intended comain of the
MCF, it is in the unintended domain of the MCF and maps to a special

value which is a value of every data type, the value REJECT.

51

,
§
o
:
i

T

™

HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 6618900 .
. . . — 7]

2 T R LRI S P

ey

y X |
DOMAIN OF MUF | '

1

w I,

. . 4]
¢ ¥

A iy

S

s k

e .

DOMAIN OF %

MIF |

i

1

RANGE OF MCF/ DOMAIN OF MCF | i

. Figure A -1. Illustration of a Function from X into Y «i

]

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 .

I A

In a sense, the improper input element is not in the domain of the module's
corresponding intended function (MIF), but is in the domain of the MCF,

i.e., the module's corresponding unintended function (MUF).

Properties of the Primitive Control Structures

While a function can be decomposed in many ways, the HOS axioms [12] provide
rules for the construction of nodal families (i.e., the decomposition
of a function). From these axioms, three primitive control structures

are derived which are used for functional decomposition [16].

These control structures are: composition, set partition, and class

partition.

y= fl(X)

y = f3(2) 2 = fi(x)

Figure A -2. An Example of Composition

y = fi(x)

y = f3(x) y = fa(x)

(x| x50}

Figure A -3. An Example of Set Partition

53

(617) 661-8900

Composition is illustrated in Figure A -2. In order to perform fl(x)'
the function f, must first be applied to x which results in output z.
z then becomes an input to f3 which produces the desired range element

of the overall function fl'

It is important to observe the following characteristics of composition

(characteristics are explained with respect to the example in Figure A -2):

(1) One and only offspring (specifically f2 in this example)

receives access rights to the input data, x, from module f1

(2) One and only one offspring (specifically f3 in this example)

has access rights to deliver the output data, y, for module f1

(3) All other input and output data that will be produced by off-
spring controlled by f1 will reside in local variables (specifi-
cally"z"in this example). Local variable, 'z} provides communi-

cation between the offspring f2 and fé

(4) Every offspring is specified to be invoked once and only once

in each process of performing its parent's MCF
(5) Every local variable must exist both as an input variable
for one and only one function and as an output variable for

one and only one different function on the same level.

Set partition, which involves partitioning of the domain, is illustrated

in Figure A -3. 1In the example, the set which comprises the domain is
partitioned*into two subsets. For set partition, only one of the offspring
will be invoked for each performance of the MCF at f1 (the determination
being based on the value of 'X''received) and that offspring will produce

the required range element for its parent module when it is performing.

The following characteristics with respect to set partition should be

observed:

*Partitioning implies the subdivision of the original set into non-
overlapping (i.e., mutually exclusive) subsets.

54

HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

-

(1) Every offspring of the module at 7, is granted permission to

produce output values of "y"

(2) All offspring of the module at f1 are granted permission to

receive input values from the variable *'x"

(3) Only one offspring is specified to be invoked per input value

received for each process of performing its parent's MCF

(4) The values represented by the input variables of an offspring's

function comprise a proper subset of the domain of the function

of the parent module
(5) There is no communication between offspring

Class partition is illustrated in Figure A -4, While set partition in-

volves partition of the domain into subsets, class partition involves

partition of the domain variables into classes and the partition of the

range variables into classes. 1In the example, it is assumed that the
domain variable has an associated data structure comprised of two parts,
"x{*and "xik Likewise, the range variable has an associated data structure

with the same number of classes as the domain's data structure.

(¥1, ¥2) = f(x1, x2)

y1 = h(xi) Y2 = g(x,)

Figure A 4. An Example of Class Partition : 1

55

N
g HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

———

£

I — ‘ - - —
,' D . . LT TR

The following characteristics with respect to class partition should be

observed:

o

(1) All offspring of the module at f are granted permission zo
receive input values taken from a partitioned variable in the
set of the parent MCF domain variables, such that each off-
spring's set of input variables are non-overlapping and all

the offspring input variables collectively represent only

ey

its parent's MCF input variables

(2) All offspring of the module at f are grantéd permission to

produce output values for a partitioned variable in the set of

the parent MCF range variables, such that each offspring's
set of output variables is non-overlapping and all the off-

spring's set of output variables collectively represent the

parent MCF variables

-

(3) Each offspring is specified to be invoked per input value

received for each process of performing its parent's'MCF

(4) There is no communication between offspring.

56

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 « (617) 661-8900
E‘ 4 " alirac 4 *“" R ‘.,.,.‘ e . e . .- -- L maacodift L, ot

']

(2]

-

REFERENCES ‘ |

[1] Hoare, C.A.R. "Operating Systems: Their Purpose, Objectives, i
Functions and Scope', Operating Systems Technigues, ed. by H
C.A.R. Hoare and R.H. Perrott. Academic Press, 1972.

[2] Punj, D., et al. "A Survey of Navy Tactical Computer Applica-
tions and Executives." Center for Information Systems Research
Report-19, Oct. 1975.

|

J

|

|

[3] Newman, B., et al. "A Representative Design for a Real-Time
Tactical Executive.'" CENTACS Report No. 57, U.S. Army Elect-
ronics Command, Sept. 1975.

[4] Hamilton, M. and Zeldin, S. "The Manager as an Abstract Systems i
Engineer.'" Technical Report #5. Higher Order Software, Inc., |
Cambridge, MA, June 1977. (To be presented at the COMPCON
77 Fall Conference, conducted by the IEEE Computer Society, t
Washington D.C., Sept. 1977.) f

[s] Lickly, D.J., et al. '"HAL/S Language Specification." Inter-
metrics Inc., Cambridge, MA.

(6] Muntz, C. Users Guide to the Block II AGC/LGC Interpreter.
Draper Laboratory/MIT Doc. R-489, April 1965.

(7] Hamilton, M. '"AGC Program Sundisk." Display Interface Rev. 267,
NASA 2021108-011, Draper Laboratory, Cambridge, MA, Nov. 1967.

(8] Lickly, D. "AGC Program Sundisk." Restarts Rev. 267, NASA
2021108-011, Draper Laboratory, Cambridge, MA, Nov. 1967.

[9] Hamilton, M. 'Management of Apollo Programming and Its Applica-
tion to the Shuttle." Software Shuttle Memo No. 29. Draper ’
Laboratory, Cambridge, MA, May 1971.

[10] Dijkstra, E.W. "The Structure of the 'THE' Multi-Programming
System. CACM 11, 5, May 1968.

[11] Robinson, L., et al. "A Formal Methodology for the Design of
. Operating System Software.'' Computer Science Group, Stanford
Research Institute, Menlo Park, CA, Sept. 1975,

[12] Hamilton, M. and Zeldin, S. "Higher Order Software--A Methodology
for Defining Software.'" IEEE Transactions on Software Engineering,
Vol. SE-2, No. 1, March 1976.

[13] "Apollo Guidance Proéram Symbolic Listing Information for Block 2",
Revision 1, NAS 9-4810, 27 June 1968.

[14] Van Nostrand, A.D., et al. Functional Writing. Center for
Research in Writing, Providence R.I., 1976.

R

[15] Hamilton, M. and Zeldin, S. "AXES Syntax Description.” Technical
Report #4, Higher Order Software, Inc., Cambridge, MA, Dec. 1976.

{16] Hamilton, M. and Zeldin, S. "The Foundations for AXES: A Specifi-
cation Language Based on Completeness of Control." Doc. R-964.
Draper Laboratory, Cambridge, MA, March 1976.

[17] Searle, J.R. "Review of J.M. Sadock, Toward a Linguistic Theory
of Speech Acts.'" Language 52, 1976.

58

HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

il

[

U
f
l
'

Section II

THE SOFTWARE SECURITY PROBLEM AND HOW TO SOLVE IT

RN

by
S. Cushing

-

TABLE OF CONTENTS

Section

SECURITY AND RELIABILITY

2. THE SECURITY PROBLEM
3. SPECIFICATION, IMPLEMENTATION, AND LEVELS
OF ABSTRACTION
4. HOS AS A GENERAL SYSTEMS THEORY
5. HIGHER ORDER SOFTWARE IS SECURE SOFTWARE
€. SOFTWARE, SYSTEMS, SEMANTICS, AND BEYOND...
REFERENCES
FIGURES
1. A Protection Matrix
2. Simple Domain Switch ‘
3a. Protection Matrix before Call to Editor
3b. Protection Matrix during Call to Editor
4. Walter's "Tree Structured Directory Model - Ml"
5. SRI Model of Program P to Run on Machine M
6. Robinson's Register Module Specification
7. Parnas' Stack Module
8. HOS/AXES Data Type Stack
9. HOS specification of Data Type REPOSITORY
10. HOS Specification of Data Type AGENT
11. HOS Tree for Functiony = %;g
12. The Axioms of HOS
13. The Three Primitive Control Structures of HOS
14, HOS Decomposition of Function f in terms of
Primitive Operations of Data Type Dy
15. Retroflexed Step Structure of HCS Data Levels
16. HOS Decomposition of Function f with Three Data

17.
18.

Levels
De-Retroflexed HOS Decomposition of Function £

Wilson's Semantic Model

7

17
31
51
63

69

11
11
18-19
21
23
29
35
37
38
42
43
44

48
54

56

}

THE SOFTWARE SECURITY PROBLEM AND HOW TO SOLVE IT L

So if a man's wit be wandering, : l
let him study the mathematics b

- Francis Bacon

: 1. SECURITY AND RELIABILITY

When digital computers first began being used in the 1950's,
people just programmed their computers in machine or assembly
language and ran their programs. With the introduction of

higher-order languages, however, and particularly with the ;
development of large and very large software systems, such as
those of the Apollo project, for example, a whole new set of

daiad ki

questions and problems arose that the early programmers could
never have imagined. How can we prevent timing conflicts?

How can we prevent data conflicts? How can we prove programs

correct? What is the relation between synchronous and asynch-
ronous processing? Bow can we make an operating system secure?
All of these questions and others constitute what Parnas [Par72a]
has termed "the so-called 'software engineering' préblem“

(p. 330).

One of the most interesting instances of this software-engineering
problem is that of guaranteeing system security. How can access

to the various components of a system be restricted specifically to
those for whom it is intended? Linden [Lind76) points out that
there are many similarities between the requirements of security
and the requirements of reliability, suggesting that "a tech-
nical breakthrough on both the security and software reliability ﬁ
problems appears to be as feasible as a breakthrouch on the " 1
security problem alone" (p. 410). Guaranteeing security re-
guires that "operating systems must be structured so that inter-

actions between system modules are rore clearly defined and more
closely controlled" (p. 411), but "this same control over the

interaction of modules is alsoc needed for reliability.”

HIGHER ORDER SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8990 i i

- '

KR e . Nt
eF i) 9 § N 5 ; Codlh 2Rl e

Similarly, "the protection mechanisms needed for security can
also be used to enforce software modularity,” and "such modularity !
would improve the reliability and correctness of software." :
In a word, "there is enough overlap between the reguirements

for security and the requirements for high system availability
that it is reasonable to attempt to solve both problems at the
same time." (Availability is a necessary part of reliability,

for Linden.,)

In this report we will argue that Linden is correct, by showing
that software specified according to the Higher Order Software
(HOS) methodology of Hamilton and Zeldin [Ham76a,b,77] is auto-
matically secure. HOS was developed as a means of guaranteeing
system reliability, without any concern for the security problem

e

PRt

per se. Systems specified in HOS are guaranteed against ever
"having timing or data conflicts [Ham76b]. The fact that they also
turn out to be secure makes HOS exactly the kind of common break-

e
ot i

through that Linden suggests is feasible.

. m— e

HOS manages to solve these two problems by showing that they
. need not arise in the first place. If software is specified
according to the principles of HOS, then there is no need to°
ask how to prevent data or timing conflicts, because there simply I
will be no such thing. Similarly, ignoring history for the
moment, if software had always'been specified according to HOS,

then it would never have occurred to anyone to ask how to make

a software system secure, because it simply would have been
secure already. Demonstrating this latter point is the purpose

!
of our present paper. L

Many people have recognized that the key to solving these problems
is to make a clean separation between the specification of a ' 4
system and its implementation, and, as we will see, HOS is a
systems theory that really manages to do this successfully.

We will see that trying to solve the reliability, security,

and related problems entirely in terms of implementaticn is like
trying to get to the moon on a skateboard. Some systems theories

Ly s o T S

. 2
HIGHER ORDER SOFTWARE, iNC. - 843 MASSACHUSETTS AVENUE .

e R i 5

— .

CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

enable us to-get off the ground, but then we are strancded for-
ever in the orbit of implementation. HOS enables us, finally,
to achieve escape velocity, break free of this orbit, and reach

whatever destination we have decided on.

M e e e

P TR T T T o mw t w—ee—r

;| 0 3

o

2. THE SECURITY PROBLEM

Linden [Lind76] presents a general abstract characterization of
system security in terms of what he calls a protection model. i

Such a model "views the computer as a set of active entities
called subjects and a set of passive entities called objects.
The protection model defines the access rights of each subject
to each object" (p. 415).

Linden represents a protection model in the form of a protection \
matrix, such as the one in Figure 1 [Lind76, p.416]. The rows of :
a protection matrix are associated with the subjects of the :
model and its columns are associated with the objects. "For

each subject/object pair, the corresponding entry in the matrix
defines the set of access rights that the subject has to the
object." For the protection model represented by the protection

AR

o

matrix in Figure 1, for example, we see that subject C may
read or execute object X, because both "READ" and "EXECUTE" appear

ot e A

in the matrix slot that occurs at the intersection of row C

and column X.

Changes to the protection matrix itself are also controlled

by the access rights represented in the matrix; "for example,

a subject with 'delete' access to an object can eliminate that
object frcm the protection matrix." Subjects can be allowed to
have access rights to each other by having subjects appear
also as objects in the protection matrix. "For example, one

[RROIIP RSP ISP PO S-S 1\ TN L VI DI A

subject may be allowed to transfer control to another subject

by using an 'enter' access right to the other subject."

R oot

Linden also introduces the notion of a protection environment,
which includes "everything that a subject might cause to be done
on its behalf by another subject,” as well as evervthing the
subject is allowed to do directly. "A protection domain is

a more restricted concept and includes only access rights to
objects that are accessible by the subject." The rows of the

FRECEDING PAGE BLAMK-NOT F1LMED

P 5
| HIGHER ORDER SOFTWARE, INC, + 843 MASSACHUSET TS AVENUE . CAMBRIDGE, MASSALHUSE LIS U213Y « 161/) bb1-840U

RSt~ s 0 ar

e T o’ G W

——

OBJECTS

HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

B e s e

EXECUTE
READ

o o) |

LoD WOEWm

416]

A Protection Matrix [Lind76, p.

Figure 1

protection matrix represent the protection domains of the pro-
tection model.

The key to Linden's approach to system security is the notion
of small protection domains. Linden uses the term "small pro-

tection domains" as "a qualitative description of a certain

class of protection models. The word 'small' is not intended :
in a rigid quantitative sense" (p. 416). A small protection
domain, for Linden, is the minimal protection domain that will
still allow its subject access to everything it has to access. _
A protection domain may be very large in a quantitative sense, i
but it is a "small" protection domain if it could not be decreased i
in size without overly restricting the access rights of its
subject. Linden calls this the "principle of least privilege."

Since "a large program usually needs access to many objects,”

it follows that "protection domains can be kept small only if

a large program executes in many different protection domains
and constantly switches between these protection domains during
its execution." Protection domains can be kept small, "if
small subunits of a program execute in their own protection

domains,"” because "a small subunit of a program typically only
needs access to a small number of objects.” It follows that
"the flexibility, ease, and efficiency of domain switching

is the primary factor in determining whether protection domains

can be kept small and closely tailored to actual needs.”

Linden integrates protection domain switching with the calling |
of a procedure. This permits each procedure to have its own 'ﬂ
protection domain, even though a domain switch might not be

involved in every procedure. A protected procedure, for Linden, L
is a procedure that does involve a domain switch.

If a procedure is a protected procedure, then it will have a
particular protection domain associated with it. "Thus the

°
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

Sgp—— -

koo

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-89'

-

-

right to access certain objects may be available during the
execution of that procedure--and possibly only during executions
of that procedure.” Each execution of a protected procedure
will possess the access rights of the procedure, whatever the
calling environment may be. The procedure itself, moreover,
"can have a state which is preserved between calls to the pro-
cedure--and that state is independent of the calling environ-
ments."

Linden points out that a protected procedure will appear both
as a subject and as an object, when represented in a protection
matrix. A protected procedure is an object because there may
be other subjects that have the right to call it. This right
is represented in a protection matrix by the appearance of a
special access right, such as the "enter" access right referred
to earlier. A protected procedure also occurs as a subject

.in a protection matrix because, naturally, "it executes in

its own protection domain."

Switching‘protection domains involves calling a protected pro-
cedure. The simplest case of domain switching is the one in
which no access rights are passed as parameters in the call.
The call takes place and execution begins in the protection
domain of the called procedure, as long, of course, as the
caller has the right to call this procedure in the first place.
Return to the previous protection domain, i.e., the protection
domain of the caller, is triggered by a return instruction in
the executing called procedure.

This situation is illustrated in the protection matrix in
Figure 2 (Lind76, p.411. User A can call the editor, while
executing in his own protection domain. He can also read or
write files X and Y either from his own domain or by calling
the editor, which is also allowed to read or write files X
and Y. The user can use the dictionary, however, only by
calling the editor, because the editor, but not the user him-
self, is allowed to read the dictionary.

. e i 5
bt . . . - bk i 5t (%)

7 phass. ¢ R 7o d i

)

yo3TMs urewoq o1dutg :Z 2anbid

g
m‘
. 3
LT ILTHA S :
IWEN oy o yoLIad 3
3LTHN ETRET! w
0 1 i
o) o REIRE) ¥ 433N E:
m _
) 2
. -
. %
$123rdns m
AYYNOI1D1C A 114 X 3114 yoL1al <
$123rdo m
5
3

A domain switch is more complex if it involves the passing of
access rights to objects as parameters "and if the protected
procedure is to be reentrant." This kind of call to a protected
procedure creates a new protection domain, i.e., a new row in
the protection matrix. "The new protection domain contains

both the permanent access rights of the protected procedure,"
defined by a template domain associated with the procedure,

"and the access rights that are passed as parameters in the
call."”

This kind of situation is illustrated in Figure 3 [Lind76, p.418).
Figure 3a shows the User A's own basic domain and the template
domain of the editor. User A has the same access rights as

he has in Figure 2, but the editor is allowed only READ access
to the dictionary. It cannot read or write files X or Y, as

it can in Figure 2. If the user wants to use the editor to

-read file X, however, he can pass access rights for file X

to the editor in the process of calling the editor. This re-
sults in the creation of a new protection domain, labeled
"INSTANCE OF EDITOR" in Figure 3b, in which the editor does
have READ access to file X. Linden notes that "other users
may be editing other files using other instances of the same
editor."

K. G. Walter [Walt75] presents what is, in effectl, a for-
malization of Linden's account of security in the form of a
model for mandatory security. Walter designs his model to

satisfy the "design requirements...that there be no unauthorized
disclosure of information and that, otherwise, unrestricted
sharing of information be allowed." The model is based on

the idea of reétricting access to information by giving a

specific classification for each piece of information and re-

quiring a user to have the proper clearance in order to access
the information.
1

Calling Walter's characterization of security a formalization
of Linden's is probably historically inaccurate, since Walter's
account appeared a year and a half earlier than Linden's.

This is the logical relation between the two theories, however,
as we show in the text.

10

ER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 .« (617) 661-8900

objects [,
subjects EDITOR FILE X FILE Y DICTIONARY

READ READ
WRITE WRITE

USER A ENTER

EDITOR READ :
TEMPLATE ;

Y
° i
i

Figure 3a: Protection Matrix before Call to Editor

objects
subjects EDITOR FILE X FILE Y DICTIONARY

°
° ' 3
°

USER A ENTER READ READ
WRITE WRITE

DR 3o W

EDITOR
TEMPLATE READ

oo ald

INSTANCE READ

OF EDITOR READ

WRITE L

Figure 3b: Protection Matrix éuring Call to Editor

11

o Y D s

ppreeny

HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

- . - .
& ~ S e P O P E . P R TR ISP . l
oah NPT - ; . Cha e N T 3 . . L A = i " e - 5 i

r—

to access the information. ’

Formally, Walter describes his model as an 8-tuple
M0 = (R, A, C, 6, u, 9, Cls, Clr)

where

is a set of repositories.

is a set of agents.

is a set of security classes.

w O »

is the "observe" relation.

(a2 © r means that agent a can
observe the information stored in 1
repository r.) 3

uCA xR is the "modify" relation.
. (a ¥ r means that agent a can

nodify the information stored in
respository r.)

 indn

gQ;C x C is a pre-ordering of the set of
security classes.

CLS: R > C is the "classification" function 1
which associates a security class
with each repository. (Informally
Cls(r) will be referred to as the 1
classification of repository r.))

|
CLR: A =+ C is the "clearance" function which I%
' associates a security class with
each agent. (Here again Clr(a) will
be referred to as the clearance of :
agent a.) ¥

Walter's repositories correspond to Linden's objects, while L
his agents correspond to Linden's subjects. The observe 3
and modify relations correspend to two general kinds of _ L
access right that can occur in a protection matrix. The ;

security classes in Mo correspond to Linden's small pro-
tection domains; it is they that determine which repositories

¥ v L)

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

T -

(8

(objects) an agent (subject) can observe or modify (access).
There is nothing in Walter's model that guarantees a null
intersection of the classes of agents and repositories, so,
as with Linden, it is quite possible for some (or all). of the
entities involved to be both subjects and objects.

Walter imposes four axioms on his 8-tuple MO in order to prove
his basic security theorem. The first two axioms state
explicitly that the relation 9 provides a pre-ordering of

the set C of. security classes.

Axiom 1: For all ¢ e C, ¢ 4 c.
(¢ is reflexive.)

Axiom 2: For all ¢, d, e e C, ¢ <« d and 4 e

<
implies ¢ 2 e. (9 is transitive.)
"The second two axioms govern, respectively, the acquisition
and dissemination of information."

Axiom 3: For all a € A and r ¢ R, a O r implies
Cls(r) < Clr(a).

That is, if agent a can observe repository r,
then the clearance of a must be greater than
or equal to the classification of r).

Axiom 4: For all a ¢ A andr € R, 2a u r implies Clr(a) 4
Cls(xr).

That is, if an agent a can modify repository r,
then the clearance of a is less than or equal
to the classification of r. Agent a can modify
only those repositories with equal or higher
security class.)

Walter says that "for making comparisons it is sufficient to
assume that the set of security classes is pre-ordered," (p. 286)
but his earlier statement that "the classification system has

a lattice structure" (p. 286), suggests that he really wants a
partial ordering, since it is partial orderings that induce
lattice structures. Formally, we include a third ordering

13

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

axiom to the effect that something cannot be both higher and
lower in the ordering than something else, as follows:

For all ¢, d e C, c 4 d and d ¢ ¢
implies ¢ = d.

The basic security theorem states that "no information

can ever be transferred to a repository in which it can be
observed by an agent that does not have sufficient clearance
to observe the source repository." Proving this theorem
requires the introduction of a "transfer" relation T C R x R,
meaning that there is ah agent that can transfer information

from the first member of R to the second in a particular
member of 1. Formally, we say that r T s for r € R, s ¢ R,
if and only if there is an a € A such that 2a © r and a ¢ s.
The basic security theorem itself requires the reflexive,
transitive closure t* of T and the notion of information
transfer path. The relation r t* s means that "there is

a finite sequence of repositories {51} such that r = r,,

s =x,,randzx, tr, ., foralli, 1 <i<n." Inother
words, r t* s if and only if information can eventually be
passed from r to S. We say that "there is an information

transfer path from repository r to repository s," if it is,

in fact, the case that r t* s.

‘Walter's basic security theorem can be stated formally in
either of two ways, as follows:

Theorem: For all r, s ¢ R, if r 1* s, then Cls(r)
4 Cls(s). In other words, if there is an
Information transfer path from repository
r to repository s then Cls(r) < Cls(s).

Corollary: 1If r and s are repositories and the classifi-
cation of r is not less than or equal to
the classification of s, then there is no
information transfer path from r to s.

14

HIGHER ORQER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

R

'y
E

What this theorem says is that if information flows from one
repository to another, then the latter has a security class

that is the same as or higher than the former; in other words,

information can flow only upwards. Guaranteeing that, in a nut-

shell, is what the security problem is all about.

15

HiGreR ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139

- (617) 661-8900

I

3. SPECIFICATION, IMPLEMENTATION, AND LEVELS OF ABSTRACTION

Walter does not stop with Mo,

Ml, which is outlined in Figure 4, and Mz, which is too compli-

but also presents two other models,

cated simply to exhibit in a figure without further explanation.
Walter describes the relationship that is supposed to exist
between successive models in the sequence MO’ Ml, Mz in terms

of a "technique of structured modeling” (p. 288), in which
successive "levels of modeling" are used to arrive at the full
description of a system. He also uses the term "Structured
Specification" (p. 285) to denote the approach to specification
that results in models that are related in this way. Model Ml
"will satisfy the security requirements in Mo plus further de-
sign reguirements... These additional restrictions make the
design more implementation specific" (p. 288) by representing
the security system as "a file system structured as in a tree
of arbitrary depth" and by providing "a mechanism for inter-
agent communication which does not require accessing a shared

file" (p. 290).

M2 is a still "more specific security systen model"'(p; 290)
involving "mechanisms which will be used as discretionary
controls for access to files." Walter says that the defini-
tion of Mg "has intuitive appeal, however, the way to apply
M0 to a complex operating system is far from obvious" (p. 293).

As for Ml, "though still fairly general, this model is ap-

propriate for a small class of machines. The next model, M2'

is applicable to few systems besides Multics," i.e., is getting !?
very close to a description of (part of) an actual operating
system, as implemented. "Eventually, some nodel (probably

an M3 or M4) will closely resemble commands in the Multics
Swstem.,"”

tereral framework for understanding what Walter is trying

.~ .z provided by the SRI systems model described by

i
¥
¥

1

- i< MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 .+ (617) 661-8900

G P

R

o=

My = (F,M,A,C,0ps0p,0ys0ysd,8,Cls,Clr)
WHERE :
F is a tree of files
M is a set of mailboxes
A is a set of agents
C is a set of security classes
pF,Q_A x F is the "retrieve information" relation.
(a pp f means that agent a can retrieve in-
formation from file f.)
C%,Q_A x F is the "store information" relation.
(a Op f means that a can store information in f.)
oM'g_A x M is the "receive" relation.
(a oy m means that agent a can receive infor-
mation through mailbox m.)
- Oy CAxM is the "send" relation.
(a o, m means that a can send information to m.)
3,§_C x C is a pre-ordering of the set of security class.
SCPxPF is the "dominate" relation on the set of files. H
(It defines the "tree" structvre on the files.) g
Cls: FUM =+ C is the "classification" function for files f
and mailboxes ;
Clr: A - C is the "clearance" function for agents. h
- ¢ X
) g
g : AXIOMS FOR M, : : %
*
Al.1l: For all c e C, ¢ d ¢ !
(9 is reflexive).
Al.2: For allc, d, e € C, c ¢ d and d 4 e implies c d e =
(d'is transitive).
Al.3: For all a ¢ A and £ ¢ F, a Fp f implies Clr(f) < Clr(a). f
' (An agent can only "retrieve" information from a file]
with ecgual or lower classification).

Figure 4: Walter's " Tree Structured Directory Model - Ml"

[Ege=——r

18

. HIGHER ORDER. SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-890u "

e i s

Al.4:

Al.S:

Al.6:

Al.7:

Al.8:

Al.9:

Al.10:

Al.11:

Al.12:

Al.13:

Al.14:

Figure 4: Walter's "Tree Structured Directory Model - Ml

For all a e Aand me M, a Py ™ implies Cls(m) = Clr(a).

(An agent can only "receive" information through a mail-
box with classification egqual to its own clearance).

For all a ¢ A and f ¢ F, a o, f implies Clr(a) 4 Cls(f).

(An agent can only "store" information in a file with
equal or greater classification).

For all a € A andm € M, a Oy M implies Clr(a) <9 Cls(m).

(An agent can only "send" information through a mailbox
with equal or greater classification).

For all £ e F, £ 6 £ (6 is reflexive).

For all £, ge F, £ § g and g § £ implies f = g.
(6§ is antisymmetric).

For all £, g, he F, £ 6§ g and g ¢ h implies f 6§ h.
(6 is transitive).

For all £, g, he F, g § £ and h 6 £ implies g § h
or h § £ (gic).
(8§ has the "tree" property).

For all a ¢ A, and £, g ¢ F, a Pp 9 and £ § g implies
a pp f. (In order to retrieve information from a file,

an agent must be able to retrieve from (i.e. search)
every file which dominates it).

For all a ¢ A, and £, g ¢ F, a o 9 and £ g and f # g

implies a Pp f. (In order to store into a file, an

agent must be able to retrieve from or search every file
which strictly dominates it. This specifically allows
an agent to store in a file from which it cannot re-
trieve; i.e., write-up is permitted.)

For all a € A, and £, ge F, a o, £f and £ § g implies

F
a o0p 9. (Since it is expected that attributes of a file

will be maintained in a dominating file (directory), if

an agent can store into a directory file and thus change
attributes of an inferior file, then the agent must also
be able to store into (modify) the inferior file).

For all £ € F, there exists an a ¢ A such that a UF f.

(There are no files which cannot be stored into (modified)
by at least one agent).

(con't)

19

Py ke

o

Robinson [Robi751], [Robi77].2 Robinson Eharacterizes a sys-
tem description in terms of "a sequence of ordered pairs
{(Po, Mg), (Pys My)se.. (P, Mn)}... called a hierarchically
structured program” (p. 272) in which Pi is a set of abstract
programs that run on the abstract machine Mi' He notes that, v
in general, the pairs will occur in a tree structure, and that ;

he assumes a linear ordering only in order to simplify the
argument. :

Each program runs on a machine, but since the

collection of machines forms a hierarchy, the

primitive operations of a machine at some level

are realized by a set of programs running on

= a machine at the next lower level (one program

4 corresponding to each operation of the machine)
' (p. 272).

"The programs abstract from the implementation details of
-machines on which they run" and "the only information avail-
able to a program is the external behavior of the machine."

The general idea of this structuring is illustrated in Figure 5,

in which "MO is the most primitive machine and can be viewed
as the instruction set for a hardware machine or as a higher-
order language" and in which "Pn is the abstract program at
the highest level, running on machine Mn." The direction of
the arrows in the diagram represent the flow of implementa-
tion, in the sense that, "for all values of i(0 < i < n), the
Set of abstract programs Pi running on the abstract machine
M, .implements the abstract machine M,

L]
i +1’
ning on abstract machine M, . "The system as a whole is

' while itself run- V

equivalent to some program P running on a machine M, where 1
M =M, and P_ is an abstraction of P."

Each of the abstract machines in Robinson's framework "can
be described as a module of Parnas...in which both the in-

ternal state and the transformation rules are characterized

2The model description in [Robi75] differs somewhat from that :
of [Robi77]. We will gquote the latter, unless otherwise ;
noted. ;

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900 ,

PRI

A — -

-

E8 Ssiai bic g0

Decreasing Implementation Specificity

by running on this machine.

Figure 5
SRI Model of Program P to Run on Machine M

i 8
l HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

s

T e

as functions of two types - V-functions (Value functions) and

O-functions (Operation functions)." Each "program running on

an abstract machine can be expressed as a sequence of calls

to the functions that make up an abstract machine." A V-func-
tion is one that "returns a value when called; the set of
possible V-function values of the module defines the state
space (or abstract data structure) of the module." A module's
state is denoted by a particular set of values for each V-
function. O-functions describe state transformations by de-
fining new values for V-functions. "A state transformation
occurs when an O-function is called and is described as an
assertion relating new values of V-functions to their values
before the call." Such an assertion "is a predicate con-
taining V-functions for which the predicate is true." It
"specifies that, as a result of a call, the new state is one
of some set of possible states; therefore the specification
‘may be incomplete." The effect of this feature is that it
"postpones binding of certain decisions until the abstract
program is implemented or even until run-time." An example
of an abstract machine characterized as a Parnas module
specification is given in Figure 6 [Robi77, p.273.

Except for its reversed numbering scheme, it seems reasonably
clear that the SRI framework we have just outlined corresponds
more than roughly, in intent, to Walter's "technique of
structured modeling” or "Structured Specification." Whereas
Walter denotes his most abstract "level of modeling" by the
number 0, with increasing numbers as we get closer to imple-
mentation, Robinson uses 0 to denote his least abstract "level
of abstraction," with numbers increasing as we get further
away from that level. The basic idea behind the separation
of levels, however, is pretty much the same in both frame-

works.

{617) 661-8900

e T

EMT R

et g

o B A TR o 34wt

integer V-function: LENGTH

Comment: Returns the number of occupied positions in the) 1
register. ‘ '

Initial value: LENGTH = 0

Exceptions: none

Integer V-function: CHAR(integer i)

Comment: Returns the value of the ith element of the
register.
Initial value: Vi(CHAR(i) = undefined)
Exceptions: I_OUT_OF BOUNDS: i < 0V i > LENGTH
O-function: INSERT (integer, i,j)

| . Comment: Inserts the value j after position i, moving
subsequent values one position higher.
Exceptions:

I_OUT_OF BOUNDS: < 0V i > LENGTH
J_OUT OF BOUNDS: <0V j > 255
TOO_LONG: LENGTH > 1000
Effects: LENGTH = 'LENGTH' + 1
Vk (CHAR(k) = if k < i then 'CHAR' (k)
else if k. = i + 1 then j
else 'CHAR' (k-1))

i
j

O-function: DELETE (integer i)

Comment: Deletes the ith element of the register, !
moving the subsequent values to £fill in the gap.

Exceptions: I_OUT OF BOUNDS: i < 0\ i > LENGTH "
Effects: L
LENGTH = 'LENGTH' - 1 !

Vk (CHAR(k) = if k < i then 'CHAR' (k)
else 'CHAR'(k + 1)) i

Figure 6

Robinson's Register Module Specification p;

yea
Py

A e DTS

23
3

HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

-~ -

-
. } e e :
. . . e e |

Walter describes the idea behind his methodology as follows:

PR I T TD A T Y g e

In many ways, Structured Specification is similar

to Structured Programming; "levels of specification"

are analogous to the "levels of abstraction" dis-

cussed in Structured Programming. However, in some

sense, these concepts are orthogonal to each other.
Structured Programming is a technigue for evolving

7 an orderly description of how a particular problem
will be solved. Typically, it is a matter of filling

in the "nitty-gritty" details of an algorithm which

is well understood.:

Conversely, Structured Specification concentrates .
on evolving an orderly description of precisely 1
what problem is to be solved. In addition, the
various levels of specification provide a forum for
discussing why the program is being designed in a
particular way. (p. 285).

Differences in terminology aside (for example, Robinson's
"levels of abstraction" would seem to be intended to cor- G

respond to Walter's "levels of specification," as well, per-
haps, as to the "levels of abstraction" of structured program-

ming), the aim of Robinson's methodology is the same. k

Robinson, like Walter, is concerned with specification, not

withlimplementation, except as- an ultimate aim. Systems must

éventuallz be implemented, of course, but this is not the
point. He describes his methodology as one which "formally
represents a program in terms of levels of abstraction, each
level of which can be described by a self-contained non-
procedural specification." (p. 271). The point is that a
program is intended to be characterized in terms of what it
is supposed to do (non-procedural), rather than in terms of
how (procedural) it is supposed to do it, exactly as Walter

says.

24

HIGHER ORDER SUF IWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

-

(IR

oo e %odars,

e . L Lia e
. 5. . sy AT

o

Robinson's characterization of a level of abstraction in
terms of abstract machines is not a problem, because this
involves only a choice of conceptualization and does not
necessarily have to affect the formal methodology in an ad-
verse way. A problem is created by the use of abstract pro-
grams, however, in the actual characterization of the ab-
stract machines. A program is, by definition, a seguence

of instructions, and so is intrinsically procedural. Indeed,

Robinson characterizes "a program running on an abstract
machine...as a sequence of calls to the functions that make
up an abstract machine" (p. 272), as we have seen. As long
as a systems framework uses abstract programs to characterize
the functions of his primitive machines, we are automatically

dealing with the how of those functions, rather than the what,
i.e., with their implementation, rather than their specifi-
cation. ¥

We should note Robinson's assertion that "the Parnas speci-
fication language expresses state transformations in a non-
procedural way... A Parnas module specification is a self-
contained medium for defining an abstraction: V-functions

are primitive, and O-functions are described solely in terms
of V-functions and the constructs of the assertion language."
What he means, presumably, is that, since the O-functions f?
can be reduced to ("described solely in terms of") the V- ;
functions and since the V-functions are primitive, i.e., not

further reducible, there is nothing more that he has to do to E
characterize the module. Those functions (0-~) which can

be reduced have been reduced and those functions (V-) which |
have not been reduced need not be reduced, because they cannot '
be reduced. That, after all, is the meaning of "primitive." L
While it is true that the primitive elements of a system (any
kind of system) cannot (or need not) be further reduced
(decomposed, described, etc.) in terms of other elements of
the system, however, it by no-means follows that there is no

need to characterize them at all.

25

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900 i

e a—

v
4 4

Consider a simple case from plane Euclidean geometry. In that
geometry, we can take the notions of point and line as primi-
tives and notions like rectangle, triangle, and vertex as

non-primitives that can be described in terms of the primi-
tives. Thus point and line correspond to Robinson's V-functions, :

since he says these are primitive, while rectangle, triangle,

and vertex correspond to his O-functions, since he says these
are not primitive, but "are described solely in terms of V-

functions." A rectangle or a triangle can be described 1
(roughly, to avoid getting too technical and missing the main '

point) as a particular configuration of lines, and a vertex
can be described as a point that is the intersection of two
lines. Thus the non-primitives are described in terms of the

primitives, exactly as Robinson wants.

" The story does not end here, however. While reduction of geo- b
metric entities ends at the level of point and line (and per- r
haps other primitives, which we are ignoring for simplicity), %
point and line themselves are then characterized in terms of f

each other, i.e., in terms of their mutual interaction, by
means of axioms. Something is a point or a line if and only
if it behaves in accord with the axioms. The axioms of a
geometry, in fact, are its most important part, because every-
thing else about the geometry follows from them, once the 5
appropriate definitions of non-primitive entities in terms :
of primitive ones are stated.

What this means in Robinson's case is that it is not enough

simply to state that the V-functions are primitive and leave L
it at that. Looking carefully at Figure 6, we see that the

only way that V-functions are characterized within the module

is 'in terms of informal comments, in English, that tell us 4
what the functions are supposed to do. The formalism, however,

places no constraints on what these functions can do, except for

giving them initial values and (perhaps) restricting their

domains. Literally, any function that has these initial

26
HIGHER ORDER SOFTWARE, INC. » 843 MASSACHUSETTS AVENUE + CAMBRIUGE, MASSACHUSE | 15 UZISY » {61/} 6b1-390L

2 o0 o
ARk bl ¥

ey

values and these domains can serve as the LENGTH and CHAR
functions in the module. Since this is too general for what

Robinson intends, he is forced to narrow down the candidate
functions for LENGTH and CHAR by characterizing them outside
of the module in terms of abstract programs, which do spell
out formally and, by definition, algorithmically the func-

tions that he wants. This step, however, ipso facto removes

us from the realm of specification and places us in that of
implementation. In the process, we lose "the major advantages
of Parnas specifications." namely, "that they abstract from

the algorithms of implementation and are self-contained” (p. 272).

We see that Parnas' modules do not really characterize their
functions completely, as they are supposed to. One of the
underlying reasons for this problem is that Parnas tries to
make his modules do too much. Parnas confuses the need to
decompose a system into subsystems with the need to char- E
acterize in precise terms the kinds of objects the system

deals with, proposing that both needs can be satisfied with his

single notion of module.

In many places, Parnas talks about "dividing the system into
modules " [Par72b, p. 1053] and "decomposing a system into
modules,"” so it is clear that modules are intended to be the
kind of thing into which systems are decomposed. With respect

to the STACK module in Figqure 7, however, he tells us that
it is proposed as a definition of a kind of object:

We propose that the definition of a stack shown in
Example 1 should replace the usual pictures of imple-
mentations (e.g., the array with pointer or the linked
list implementations). All that you need to know about
2 stack in order to use it is specified there. There
are countless possible implementations (including a large
number of sensible ones). The implementation should be
- free to vary without changing the using programs. 1If
i the using programs assume no more about a stack than is
stated above, that will be true. (p. 332)

27
HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 « (617) 661-8900

¢

gt W, o IR

It follows from these facts that Parnas is decomposing systems
into kinds of objects, but this is not the sort of result he
really wants. It is this kind of inadequacy that leads Robinson
to try to augment the Parnas methodology with things 1like

abstract programs.

Function PUSH(a)

possible values: none

integer: a

effect: call ERRL if a > p2 V a < 0 \V 'DEPTH' = pl
else [VAL = a; DEZPTH = 'DEPTH" + 1;]

Function POP

possible values: none
parameters: none

effect: call ERR2 if 'DEPTH' = 0

the sequence "PUSH(a); POP" has no net effect if no error
calls occur.

Function VAL

possible values: integer initial; value undefined
parameters: none

effect: exror call if 'DEPTH' = 0

Function DEPTH

possible values: integer; initial value O
parameters: none

effect: none

pl and p2 are parameters. pl is intended to represent the
maximum depth of the stack and p2 the maximum width or
maximum size for each item.

Figure 7

Parnas' Stack Module

P st s e

HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

— -

. o,
. ey,

4. HOS AS A GENERAL SYSTEMS THEORY

Like Linden and Walter, HOS recognizes that there are essentially
two modes ©Of existence in the world, that of being and that of
doing, and that everything generally manifests both modes at
once. A given thing can either be or do and, in general, will
both be and do at the same time. This dichotomy reflects the
related bifurcation between being and becoming. If there is

something that is doing, then there is something (perhaps the
same thing) that is being done to, and this latter thing is

therefore becoming. Again, in general, anything that is doing
is also being done to and so is itself becoming, as well as

being.

This enables us to understand the important relationship be-
tween constancy and change. If we remove the front element
from a queue, for example, we still have the same cueue, with
one element removed, but we also have a different cueue, i.e.,
the one that differs from the original one in exactly that
element. The queue can still be the same queue, even though
it has become a different queue, and we are free to choose

whichever of these aspects of the situation fits our needs
for any particular problem. We can also say the gqueue has
changed its state, stipulating that the queue itself has not
changed, but then it is the states that are being or becoming,

so the same dichotomy emergce again on a higher level of ab-
straction.

Linden expresses the distinction between being and doing in

terms of his distinction between objects and subjects, as
we have seen. Objects are things that are done to, i.e.,

are things which do, and the objects are precisely %<he things
they do to. Walter expresses this dichctomy in terms cf his

distinction between repositories anc agents, as we have also

[,
they simply are, rather than do. Subjects, in contrast, :
§?

51

HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 112"«

-

seen. Agents are things which do, and repositories are things
which are and which therefore are done to by the agents. As
we have discussed, anything, in general, will both be and do,

so anything is both an agent and a repository and both a sub-
ject and an object, as Linden, and presumably Walter, would

While both Linden and Walter thus recognize this fundamental
dichotomy in any system, there are serious defects in their
formulations of this dichotomy. The problem with Linden's

formulation is that it is not formal. All he tells us is that f
"a protection model views the computer as a set of active

entities called subjects and a set of passive entities called ?
objects" (p. 415), with no formal characterization of what ;
these subject/object things or their properties are supposed
to be., Such an omission is perfectly justifiable in the con-

|
2
f
agree. 1
i
I

-text of the general survey sort of article in which it occurs,
but it must be corrected in a complete systems theory.

Walter's formulation is quite formal, but it falters in a h3
different respect. A fully general systems theory should be 1
capable of expression at the highest possible level of ;
generality. Like Linden's account it should state things
solely in terms of subjects and objects, i.e., things that ;
do and things that are, at this highest level of gemerality,
while permitting subcategorizations of these basic categories,
é.g., procedure, protection domains, etc., at lower levels

of generality: Walter's problem is that he-conflates levels]
by including something not at all on a par with agents and

repositories with respect to generality, 1i.e., security ‘
classes, on the highest level of generality of his systems
theory. Again, within a sufficiently limited domain of in-
terest, Walter's decision to lump the highly specific notion
of security classes in with the completely general notions of 1
agent and repository is excusable, but outside of such a domain,

32 . if

-

HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900 "

it will place unnecessary restrictions on any system specified
in accordance with the theory. A general systems theory]
should allow the introduction of lower-level notions like %

{

security classes, if they are needed, but it should not require
them on its most general level, where only agents and re-

positories should reside.

HOS expresses the distinction between being and doing in
terms of the familiar notions of data and function, and it
does this in a completely formal way. Anything that can be
can be represented as a member of a data type, and anything
that can do can be represented as a function3. As we would

expect from a correct formulation, anything that can be, i.e.,

a datum, can also do, by serving as input to a function, and
anything that can do, i.e., a function, can also be, since b

functions themselves make up a data type.

For example, if datum x is mapped by functions fl, f2’ f3,
f4, f5 onto data Yir Yor Y30 Yy4r Ygu respectively, then x ;ﬂ
itself can be viewed as a function that mapsthe data fl’ fz, o
f3, f4, f5 onto Yyr Yyr Y3r Y4r Y- Functions themselves f
can be data, in other words, and data can be functions,de-

pending on the requirements of the particular problem we are

working on. If FXY is the subset of data type FUNCTION whose

members map data type X into data type Y, then X is the sub-

set of FUNCTION that maps FXY into Y. Both interpretations]
are correct, in general, and which one we choose depends on {

el

what we need for a specific problem.

In our formulation, however, unlike Linden's, this revers- !
ability follows naturally from the nature of data and functions. !‘
We do not really have to say explicitly that subjects can also ;
be objects and vice versa, because that fact follows automati-

cally from our identification of subjects with functions and i

objects with data. B

3[Ham7Ga] uses the term "function'" in a more highly restricted sense and the ;
teri: "operation'" in the sense of our "function." For our present purposes,
the distinction is unimportant, and we will use the two terrs interchangeably.

w
(92}

HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

-

Again in accordance with the fundamental'dichotomy, although
data and functions are distinct components of systems, they
are at the same time inseparable from each other, because

each is characterized formally in terms of the other. A

function consists of an input data type, called its domain,

an output data type, called its range, and a correspondence,
called its mapping, between the members of its domain and those of
its range; a function can be characterized, therefore, as an
ordered triple (Domain, Range, Mapping), where the components

are as we have just stated. A data type consists of a set i {

of objects, called its members, and a set of functions, called
its primitive operations, which are specified by giving their

domains and ranges, at least one of which for each primitive
operation must include the data type's own set of members, and
a description of the way their mappings interact with one
another and, perhaps, with those of other functions; a data
.type can thus also be characterized as an ordered triple, this
time (Set, DR, Axioms), where Set is the set of its members,
DR is a statement of the domains and ranges of its primitive

operations, and Axioms is a description of the interactive
behavior of the mappings of the primitive operations.

An example of an HOS data-type specification, namely, type
STACK, is given in Figure 8, written in the HOS specification
language AXES [Ham76al. It is not difficult to see that this
specification avoids all of the problems that we discussed

vy L_‘a:“" daan . ¢

in connection with Parnas' stack module in Figure 7. The
specification in Figure 8 has absolutely nothing to do, by
itself, with system decomposition. It is a definition of

a kind of object, plain and simple, and thus serves exactly
the kind of purpose it is suited to serve, rather than trying %
to overextend itself, as Parnas' module does. Furthermore,

it is entirely self-contained, because the primitive operations
are characterized in terms of each other, rather than being

left dangling in the "module" to be rescued by abstract

34

[

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

DATA TYPE: STACK;
PRIMITIVE OPERATIONS:

Push(stack

stackl 27 1nteger1);

stack, Pop(stack,) ;

integerl Top(stackl);

AXIOMS:
WHERE Newstack IS A CONSTANT STACK;
WHERE s IS A STACK;
WHERE i IS AN INTEGER:

Top (Newstack) = REJECT;
Top(Push(s,i)) = 1i;
Pop (Newstack) = REJECT;
Pop(Push(s,i)) = s;
END STACK; . k

i
Figure 8 ;
HOS/AXES Data Type Stack

e A

HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

- . L . . . -))
; 3 Ny o o ak rRiad pacalOBl : ad. -
- B Lo g baiildiel, LR] B ” y . Lo B ? o

——

-

programs. Finally, it is absolutely implementation-free,
because any implementation, whether made up of vacuum tubes,
transistors, integrated circuits, magnetic bubbles, or ice-
cream cones, will be a satisfactory implementation, as long
as primitive operations can be defined in the implementation
that behave in accordance with the axioms.

An interesting thing happens when we try to specify Walter's
Mg in terms of HOS data types. The first thing we notice

about MO is that repositories are more basic than agents.
An agent, in Walter's terms, is anything that can observe or

modify a repository, while a repository is anything at all
that can be partially ordered. Walter says that "associated
with each repository is a security class which measures the
relative sensitivity of the information stored within it."

Since the only real function of the security class is to
_measure "relative sensitivity," it follows that their func- F
tion could be accomplished just as well by partially order- ?4
ing the repositories themselves. This enables us first to g
characterize the class of repositories as a data type inde- :
pendently of the class of agents and then to characterize
the class of agents as a data type in terms of the data

tYpe REPOSITORY. It also enables us to eliminate the class
of security classes altogether from our model by imposing
our partial ordering directly on the data type REPOSITORY
and assigning each agent a maximal repository it can observe
and a minimal repository it can modify. This confirms our
earlier observation that Walter is conflating levels of
generality in his model. Security classes can be introduced

as a data type at a lower level of generzlity, if they are L
really needed for a particular problem, or if they are simply
desired for reasons of.convenience or elegance, but they have |

no place on the highest level of generality of a general

systems theory.

36

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900 'l :

— e - - - - — v - ogenar e Trg e e S e T . § o Touzag = EEL-

Figure 9 gives the HOS specification of data type REPOSITORY, {
written, as usual, in AXES. As just noted, the only primitive

operation we need in this data type specification is the . %
partial ordering Atmost, whose axioms are available with AXES ;

and thus do not need to be stated explicitly.4

DATA TYPE: REPOSITORY;

PRIMITIVE OPERATIONS:
boolean = Atmost(repositoryl, repositoryz) b

AXIOMS:

END REPOSITORY;

Figure)
HOS specification of data type REPOSITORY

Note that whereas Walter treats his partial ordering as a

general relation, i.e., as a general subset of C x C, or equi-
valently, a general set of ordered pairs (Cl,Cz), we treat

it as a function, i.e., a subset of REPOSITORY x REPOSITORY

x BOOLEAN in which the first two components of each
(Rl,Rz,b)uniauelz determine the fhird. The possibility

of treating any relation as a function that maps intoc BOOLEAN
is a general property of relations which HOS takes full ad- 'ﬂ
vantage of. It enables us to integrate the treatment of re- .
lations that might not normally be viewed as functions into)
the general functional-decomposition framework of HOS and thus
to see how such "non-functional" relations fit into the system
as a whole of which they are a part.

4Equality is also needed, but this is provided in AXES itself r

for every data type. Atmost is not a universal operation,

as Equality is, but is universally available, in that we can in-

clude it in any data type specification with whose axioms its

own axioms are consistent. The axioms of Atmost are stated once

and for all in AXES and thus need not be restated every time

the operation is included among those of a particular data type. !
y Once Atmost is included among the primitive operations of a

particular data type, its axioms are automatically those that

are stated for it in the theory. See {Cus77al for discussion

of these ideas.

3
i HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

L oip rle Ty

Figure 10 gives the AXES specification for data type AGENTS. As noted earlier,
there is one primitive operation, Observeclearance, that assigns to each agent
a maximal repository it can observe and a second primitive operation, Modify-

clearance, that assigns to each agent a minimal repository it can modify.

The remaining two operations, Observes and Modifies, correspond to Walter's

6 ("observe") and u ("modify') relations, respectively, in the way discussed

in the preceding paragraph.

DATA TYPE: AGENT; i
PRIMITIVE OPERATIONS: :

|
‘repository = Observeclearance(agent); !
repository = Modifyclearance(agent); !]
boolean = Observes(agent,repository); "
boolean = Modifies(agent,repository};

w1

AXIOMS:

WHERE a IS AN AGENT

WHERE r IS A REPOSITORY
(Observes(a,r) D Atmost(r,Observeclearance(a)} = True;
(Modifies(a,r) D Atmost(Modifyclearance(a),r)) True;
Atmost (Observeclearance(a), Modifyclearance(a)) = True;

END AGENT;
Figure 10. HOS Specification of Data Type AGENT

The three axioms of data type AGENT together provide the effect of Walter's

Axioms 3 and 4, without the use of "security classes.'" The first axiom says

that if an agent can observe a repository, then that repository must be lower
(but not necessarily strictly lower) in the partial ordering of repositories
than the maximal repository the agent can observe. The axiom functions, in
other words, as a mutual definition of '‘can observe' and "maximal observable

* repository' in terms of each other and the partial ordering, in the usual man-

| ner of HOS data-type axioms. The second axiom says that if an agent can

: modify a repository, then that repository must be higher (though perhaps not
: strictly higher) in the partial ordering of repositories than the minimal re-
é pository that the agent can modify. This functions, again, as a mutual defini- ,
' tion of "can modify'" and '"minimal modifiable repository" in terms of each

other and the partial ordering.

Given the first two axioms, the third axiom provides all of the effect of

Wulter's "security classes" by guaranteeing that the maximal observable

“The symbo! "D" is a traditional infix symbol for material implication

in formal logic and is used here in place of the AXES prefix operation

syvmbol "Entails'" [Ham76a). It seems reasonable to use such traditional

infix symbols as abbreviations for AXES prefix symbols, whenever this is
convenient, and this convention is adopted explicitly in [Ham76a] and {Cus77a].

38
NUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617} 661-8900

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVE

PE T " 2\ £

[

PN

[
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

-

repocitory is always lower in the partial ordering than the minimal

modifiable repository. This means that, for a given agent, the

lattice of repositories can be divided into an "upper half" and a

"lower half," such that the agent can observe orly repositories in

the lower half and modify only repositories in the upper half.
This, however, is really the only purpose that security classes
serve in Mg: SO we really can dispense with them entirely, as we

have done.

In Walter's terminology, we havc reduced his 8-tuple
(R, A, C, 68, u, 4, Cls, Clr)

to a 7-tuple

(REPOSITORY, Atmost, AGENT, Observes, Modifies,
Observeclearance, Modifyclearance)

by showing that one of his data types is superfluous and that
his primitive operations that map into that type can be re-~
-placed by different primitive operations which have the same
effect but which have only the two remaining data types as
domains and ranges. Whereas Walter's 8-tuple requires two
special axioms, besides those for the partial ordering, which
are intrinsic to AXES, but which Walter has to state, making
a real total of five axioms for him, our 7-tuple requires
only three explicitly stated axioms, as shown in Figure 5.

It should be noted that if we had tried to specify explicitly
all three data types that Waltér proposes, we would immediately
have run into problems. Walter names his data types and de-
scribes how his operations (functions/relations) are supposed
to work, but he does not explicitly specify either the opera-
tions or the types. His Axioms 3 and 4, for example, really
express relatibnships between types, rather than defining
characteristics of the .individual types themselves. From

the HOS point of view, this amounts to putting the cart be~
fore the horse, stating a relationship between two things

before we have any idea at all what it is that ig beinc related.

From Walter's point of view, of course, this is perfectly legi-

timate, because, presumably, he views the situation as being

39

L

analogous to that of points and lines in plane geometry, which
also are usually characterized not independently as data types,
but in terms . of each other. The advantage of our point of
view is its complete generality. Identifying being things
and doing things with data (types) and functions, respectively,
enables us to specify any éystem at all in a principled way,
without introducing any further kinds of entities. Walter's
formulation of this distinction in terms of a mutual defini-
tion of repositories and agents, in contrast, still requires
him to use functions (and relations, for that matter) to de-
fine his repositories and agents. 1In our framework, reposi-
tories and agents are data and functions, respectively, and ;
that is the end of that. "
j

We could have defined a type "SECURITY CLASS" in terms of the C
partial ordering, for example, but then we would have been !
unable to write axioms on the data types AGENT and REPOSITORY
for the "primitive operations" CLS and CLR that map these
types into that typ® without introducing a host of other
"primitive operations." Similarly, there would have been

no non-arbitrary way to decide whether 6 and u, which take

both agents and repositories as input, should be "primitive
operations" on AGENT or on REPOSITORY. By recognizing that
the only function of "SECURITY CLASS" in M0 is to provide
an appropriate partial ordering for REPOSITORY, we can see
that REPOSITORY is a more basic data type than AGENT and
define the partial ordering directly on REPOSITORY, as

we did. In other words, REPOSITORY is "SECURITY CLASS" at
the level of wgenerality at which MO is defined. Whether
we call that single type "REPOSITORY" or "SECURITY CLASS"

is, of course, entirely a matter of choice. \

The other important function that Parnas tries tomake his
modules serve, i.e., system decomposition, is specified in
HOS in terms of decomposition trees, also called control

maps. Given a system that involves certain data tyvpes, the ;%
function the system performs can be decomposed into a tree
structure whose nodes are functions and whose terminal nodes,

in particular, are primitive operations of the data types, i
i

40
HIGHER ORDER SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-890.

‘o

|
|
\J

where the collective effect of the functions at the terminal
nodes is the same as that of the system as a whole. Such
tree structures are not intended to provide definitions of

kinds of objects, as Parnas' modules are, but represent system

decompositions into subsystems, plain and simple. An example
of such a decomposition tree, for the function y = %;g, is
shown in Figure 11. The domain and range of the decomposed

function can be determined by the typed variables that re-

present inputs and outputs and by the primitive operations that

appear at the terminal nodes. The tree itself is precisely
what gives the mapping of the decomposed function, by showing
how that mapping gets accomplished in terms of the collective

behavior of the independently characterized primitive operations.

The key to the usefulness of these decomposition trees lies

in the six HOS axioms, listed in Figure 12. It is these axioms,

-in fact, and their consequences, of course, that make HOS HOS.
While HOS can specify any system that can be specified, the
specification must be in accordance with these axioms or the

system may be incomplete or unreliable. Any software system,

in particular, that is specified in accordance with these axioms

is automatically guaranteed to be reliable, in the sense that

no data or timing conflicts can ever occur [Ham76b]. Formally,
the axioms tell us that a well-formed HOS tree is always eguiva-

lent to a tree in which every node is occupied by one of the

three primitive control structures, shown in Figure 13. Abstract

control structures, defined in terms of the primitives may

also appear in well-formed trees, and, conversely, any control
structure, i.e., configuration of parent and offspring nodes,
can appear in a well-formed tree as long as it can itself be

decomposed into the primitives.

Such an HOS tree can be interpreted either as decomposing a

function into primitive operations or as building up a func-

tion out of primitive operations. Which interpretation we

s 41

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139

‘v

+ 1617) 661-8%00

ey - paiaiaie’ L

]

y = f(a,b,c,d)

y = DlV(t],t (t1yt2) = fl (a,b,c,d)

2)

t, = Sum(a,b) t, = Difference(c,d)

Figure 11

HOS Tree for Function y = g;% L

42

HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . {617) 661-8900

s

e

'

DEFINITION: Invocation provides for the ability to perform a function.

AXIOM 1: A given module controls the invocation of the set of
functions on its immediate, and only its immediate
lower level.

DEFINITION: Responsibility provides for the ability of a module to
produce correct output values.

AXIOM 2: A given module controls the responsibility for elements
of its own and only its own output space.

DEFINITION: An output access right provides for the ability to locate a
variable, and once it is located, the ability to give a value to
the located variable.

AXIOM 3: A given module controls the output access rights to each
set of variables whose values define the elements of the
output space for each immediate, and only each immediate
lower-level function.

DEFINITION: An input access right provides for the ability to locate
a variable, and once it is located, the ability to reference the
value of that variable.

AXIOM 4: A given module controls the input access rights to each
set of variables whose values define the elements of the
input space for each immediate, and only each immediate
lower-level function.

DEFINITION: Rejection provides for the ability to recognize an improper
input element in that, if a given input element is not acceptable,
null output is produced.

AXIOM 5: A given module controls the rejection of invalid elements
of its own, and only its own, input set.

DEFINITION: Ordering provides for the ability to establish a relation
in a set of functions so that any two function elements are com-
parable in that one of the said elerents precedes the other said
element.

AXIOM 6: A given module controls the ordering of each tree for
its immediate, and only its immediate, lower level.

Figure 12

The Axioms of HOS

L

y = f(x)

TN

y = fl(t) t = fz(x)

COMPOSITION

y = f(x)
P(x) =P (x)

y = fl(X) y = fz(x)

SET PARTITION

(yqay,) = f(xI,xz)

y = f1(x1) Y2 = fz(xz)

CLASS PARTITION

Figure 13

The Three Primitive Control Structures of HOS

44

HIGHER ORDER SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

he L}

- i

choose for a particular tree depends, as usual, on the use we 7
want to make of it. Under either interpretation of such a t
tree, however, what we end up with is a specification of the

function at its root node that is genuinely non-procedural, i
i.e., non-algorithmic, and entirely free of implementation ;
considerations. The tree provides a complete and explicit |
account of what functional mapping the function performs ' @
and how that mapping is collectively carried out on the types i
involved by their primitive operations. Everything is clearly !
spelled out in terms of the hierarchical organization of

functional mappings, and this -~no more, no less-- is exactly 3
what we require of an adequate specification methodology.

The need for abstract programs, i.e., (procedural) seguences
of abstract calls to the primitive operations of abstract
machines, is entirely eliminated. It follows thét replacing
each of Robinson's Pi's with an HOS tree will maeke the pro-
.blems we found in connection with his "abstract programs"

disappear.]

It is worfh noting, at this point, that HOS does not distin- Y
guish at all between O-functions and V-functions, because,

however important this distinction may be in particular im- 1
plementations, it simply does not exist from the point of . i

view of specification, i.e., on the highest level of general-

ity. Functions are things that do, as opposed to be.
Sorting out different kinds of functions is something we can 1
do at lower levels of generality, but has no place as a re-.
guirement of the theory itself.

To illustrate this point again, suppose we have a register
whose positions are filled with integers, as in the example r
of Figure 6 (a stack or gqueue would do just as well for our

purposes; c.f. Figure 8 for data type stack and [Cus77H for
data type priority queue, for example). Obviously, there

is a big difference between an implemented register and the

iy
. . . I3
; ' integers it contains, and thus between changing the state of :
: 1
45
o
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

BT O R

" NPT N T '. - ‘-n‘

the register and taking one of those integers as a value.
From the point of view of specification, however, a register

is every bit as much of an abstraction as an integer. The

two abstractions differ, moreover, only in the interactive
behavior of the primitive operations that are used to char-
acterize their data types, as this behavior is specified in
the axioms of the respective type. From the point of view of
specification, therefore, changing the state of an implemented

register amounts simply to producing a new abstract register

as a value. If we take a register and remove its last element,
for example, we get a new register that is identical to the
original register except that it lacks the original recister's
last element. This may not be what happens in implementation,
but it is the logic of the situation, and that is what speci-

fication is really all abouts.

As we observed earlier, Robinson supplements his "abstract
machines" with "abstract programs" in order to do fully the
two jobs that Parnas wants his modules to do. Robinson's
"abstract programs" tell us what the functions really are that

are intended to be characterized in the modules.

Robinson's intention can be successfully achieved by replacing
each component of his framework with a corresponding component
of HOS. Since his "abstract programs" serve as the characteri-
zations of functions, we replace each of them with a decomposi-
tion tree. This relieves his "abstract machine" modules

of the burden of serving as the units of system decomposition
and leaves them free to serve as definitions of kinds of ob-
jects, which is what they would prefer to do anyway, as we

have seen. We thus replace each of the "abstract machines"
with a set of data-type specifications of HOS.

6Note that this is just another way of looking at what we said
about queues in the second paragraph of this section.

46

HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . {617} 661-890¢

Formally, then, we replace each of Robinson's ordered (P,6M)
pairs with an ordered pair (D,T), where D is a set of data

types replacing the "abstract machine” M and T is a set of de-
composition trees replacing the set of "abstract programs" P.
Robinson's levels of abstraction gets replaced with a data level

of HOS. For simplicity, we will assume that the data levels
are linearly ordered, in order to preserve the analogy that
we are developing with Robinson"s account of the SRI method-
ology, but, in fact, only a partial ordering is really neces-
sary, as long as there is a maximal data level in the ordering

that contains only one tree.

Higher data levels are related to lower data levels in that

the composition trees of each data level decompose the
primitive operations of the next hicher data level in terms

‘of the primitive operations of the lower data level’. For every

AR
¥ b e

primitive operation f of a member of Di+1 (i>0), in other words, v
there will. be a decomposition tree in Ti whose root is f and
whose leaf nodes are primitive operations of a member of Di'

PN

The primitive operations of the lowest-data level data types D0
are the primitive operations of the system, because these are
not decomposed at all, but are characterized only in terms

of their axiomatic interaction. The Di thus play the role

of Robinson's Mi and the Ti play the role of his Pi' as we

said we want them to do, but avoiding any suggestion of

implementation.

e e it o

The simplest case, in which each D; contains a single data type

and in which Tn contains only one decomposed function £, corres-

e -

ponding to Robinson's single program P, is illustrated in
Figure 14 which clearly reveals the parallel between the HOS

7We are restricting our discussion of HOS here somewvhat, in ;
order to maintain as close an analogy as possible with Robinson's ‘
framework. Later we will expand our account by discussing HOS ¥

in fuller generality.

47
b Y
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . {617) 661-8900 ‘

L€,

” PR -
T)

|
)
!
f
i
Tn: f Data Type: On; !
/A\\ Primitive Operations:- .
AN , f !
/ nl 1
——— \f\ fn2 l
nl n,m - !
" Axioms:"*™n i
| ° ° ® t
/ i
T, . f. Data Type: D. .; :
i+l fi+2,l '*va-+2 Primitive Ope};llons: '
PNV AN Fia |
—ﬁ . N
\ f f\ & Rt Tix1,2
. .- <
T m, LT, of o fi+|,m.+
o . i+ f
Axjoms:
!
o
T f f. e Data Type: D.; in
! DARL *mia &° of lprimitive Opefations: |
///\\ these primitive £, 1
e A operations il o
/ \ / iz .
£, -muf, f. -=-f f.* X
il iym, il tym, "mi \
Axioms: {ﬁ
1.
> i
- ® o ® &
>
ut /
z T.: ' Data Type: D,;
= 2° f3‘ f3 n Primitive Operations:
o f
o AA —_
z / / Pt B
. farr--f for=-fa.m 'l f) .
2 i 2 faxioms:~*"2 -
o ,
[~
T, €dﬂp 7 Data Type: D;
% fa fom & 11 terms of {p.imitive Operations:
/)\{ </ these primitive £ .
-//_\i ——— L% #_operations __ N .
/ 2 |
firm fim, =, fiom,
To: Data Type: D_;
f)l f m Primitive Operations:
AN AN o1 '
NNV ' foz
fm'" fO.m '01"' FO'm fo :
0 . 0 . O.,m p
Axiomg: ' 0 j

Figure 14

HOS Decomposition of Function £ in terms of Primitive Operations
of Data Type D,

it

48
HIGHER ORDER SOF IWAKE, INC. « 543 MASSALHUSE | IS AVENUE « LAMBKIUGE, MASSACHUSETTS 02139 - (617) 661-8500

A . .) " PN ' g2 : ol - . 0 20 o isamed v oy o s e _]

2.3 SN

framework we have developed here and the SRI framework illus-
trated in Figure 5, The direction of the arrows in Figure 14
denotes flow of decomposition, however, rather than flow of

implementation, as is the case in Figure 5. Everything in

Figurel4 is strictly in the realm of specification and every
subspecification ("module"), i.e., data types, trees, and 1]
data levels, is genuinely self-contained.

It is worth noticing at this point that Figure 14 suggests)
a way in which a relatively simple proof-of-correctness pro- .
cedure might be developed for software specified in HOS. l

Robinson gives the following general account of how a proof- A

of-correctness procedure is supposed to work:

The goal is to prove the correctness of a program P
with respect to an input assertion, ¢, and an out-

put assertion, Y. Verification requires the inser-
tion of inductive assertions {g;l}into the program's

flowchart, breaking the program into simple paths.
Each simple path has one entry and one exit and
between these a fixed number of executable statements.
For each simple path, a formula called a verification
condition (VC) must be stated and proved to be a
theorem. The validity of all the VCs for a program

is sufficient to demonstrate the partial correctness
of a program~-i.e. for all inputs satisfying the input
assertion, the output assertion is satisfied if the 3
program terminates. Termination can be proved by]

inductive assertions (usually different from those
used to prove partial correctness) that bound the
number of loop executions... (p. 274).

If we view Robinson's description in terms of Figure 14,

we get the following general picture. What we need in proof-
of-correctness is a set of intermediate points in the speci- i
fication of a function, at which correctness assertions (verifi-
cation conditions) are stated and can be proven. In Figure 14,
such intermediate points appear to be provided automatically

at each data level, where the axioms on data types can be viewed

as assertions on the decompositions of higher-data level primitive

4 49

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

operétions into lower-data level primitive operations. The
input assertions ¢ are provided by a statement of what, in
general, we intended the specified function to do. Spelling
out this procedure in detail will require further work,. but
the general idea would seem to be clear.

o=

50

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . {617) 661-89¢

s
7
1
4

i

-

5. HIGHER ORDER SOFTWARE IS SECURE SOFTWARE

Now we are in a position to return to our main topic of security.

Given the parallels that we have developed between the SRI
"specification" methodology and HOS, it would undoubtedly be
useful to examine the SRI security model in view of these
parallels and see whether we can shed any light on how that
model can be tightened up, as we did for Walter's. There is
good reason for not doing this, however. The SRI notion of
security is very similar to Walter's, as we can see from the

following description of that notion by Feiertag:

In a multilevel secure system there is a predefined
set of security levels. The security levels are com-
posed of clearances (or classifications) and category
sets, but the composition of the security levels is
an unimportant detail for purposes of this discussion
and will be largely ignored?®. What is important is

- that the security levels are partially ordered by the
relation "less than" represented by "<". Each pro-
cess in a multilevel secure system is assigned a
security level. The processes may invoke functions
that change the state of the system and return values.
Each function instantiation (i.e., a function with a
particular set of argument values) is assigned a
security level. A process may only invoke those
instantiations of functions that have been assigned
the security level of the process. A system is
multilevel secure if and only if the behavior of a
process at some given security level can be affected
only by processes at a security level less than or
equal to the given level. Stated in terms of func-
tions, this says that the values returned by a
function instantiation assigned some security level
can be affected only by the invocation of function
instantiations at lower or equal security levels.
Stated in loose terms this means that information
can flow only upward in the system from processes
of lower security level to processes of higher security
level. [Fei76, p. 1].

We already have enough’'at our disposal, however, to solve the

security problem altogether, without trying to reexamine
Feiertag's model in light of HOS. Doing the latter can thus

be left simply as an interesting exercise for the reader.

8Like Feiertag, Walter also informally characterizes a "classification" as

consisting of a "sensitivity level” and a '"compartment," but, also like

Feiertag, this distinction plays no real role in his formal security model.
Note that here, too, a secure model is characterized uas one in which infor-

mation can flow only upward.
51

HIGHER ORDER SOFTWARE, INC.» 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139

+ (617) 661-8900

¢ a—

We arrived at our HOS model in Figure 14 by sticking fairly
closely to Robinson's SRI model, as illustrated in Figure 5,
and showing that each component of his model could be made
completely free of implementation by replacing it with the
corresponding HOS notion. What we found, essentially, was
that the step from implementation to specification can indeed
be made in somewhat the way Robinson wants, but only if we
reformulate his notions in non-implementation terms. To

capture successfully what Robinson is trying to express,

f we have to replace his "abstract machines"” with HOS data-type
specifications and his "abstract programs" with HOS function-

decomposition trees.

In fact, however, HOS is considerably more general than the
model in Figurel1l4. 1In particular, there is no reason for the
relationship between the primitive operations of successive
data levels to be related as directly as Figure 14 suggests.
In the figure, the primitive operations of one data level are
decomposed directly into the primitive operations of the next
lower data level. In general, however, there can be inter-
mediate operations on the lower data level that mediate this
decomposition.

As we noted earlier, a data level of HOS is an ordered pair
(D,T), where D is a set of abstract data types and T is a set
of decomposition trees. We also said the data levels are
linearly (or partially) ordered and that they are related in that
the decomposition trees of each data level decompose the
primitive operations of the next higher data level in terms of
the primitive operations of the lower data level. In the most
general case, however, the decomposition trees on one data
level also use the primitive operations of that data level at
F : their terminal nodes to define operations that do not appear
as primitive operations of the next higher data level. 1In

} this case, there will be further decomposition trees between
the data levels whose roots are primitive operations of higher

52

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIbGE, MASSACHUSETTS 02139 - (617) 661-8900

—, ittt

e A

f—
.

-

data levels and whose leaves are primitive or non-primitive

operations of next-lower data levels.

To put the point a little differently, a data level of HOS,
from the most abstract point of view, is nothing more than

an ordered pair (D,T), where D is a collection of sets and

T is a collection of mappings (mathematical functions).

What makes such an ordered pair an HOS data level, is the kinds
of constraints that are imposed on D and T by the HOS axioms

(and their consequences). Every member of D is not only a
set, but a set whose members behave towards each other in a
way specified in an HOS data-type specification. Every mem-
ber of T is not only a mapping, but a mapping that is decom-
posed in a well-formed HOS tree.

The mappings in T can represent completely general functions
-and do not have to be primitive operations on either their

own or any other data level. If a mapping f is non-primitive
on its own data level, then there is a decomposition tree that
connects it to the primitive operations of that data level. b
Such a tree can be said to be horizontal, because it relates

primitive and non-primitive operations on a single data level.

There is also, however, a vertical tree that relates f to the

primitive operations of the next higher data level. 1In this

tree £ is one of the leaves and the root is one of the primi-

tive operations of the higher data level.

What we get instead of the arrows in Figure 14, in other words,
is a retroflex step structure like the one in Figure 15.

Each line segment in Figure 15 represents a set of decomposi-
tion trees, some of which are horizontal (on a data level)

and some of which are vertical (between two data levels).

The arrows point away from the root nodes and toward the leaf
nodes of the trees they represent. Filled circles represent

primitive operations of a data level, while fi: ed squares

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

fo— ——

!

|
}
E
r LEGEND !

<} = trees within a data level
¥

= trees between data levels

B = non-primitive operations
of a data level

Arrow direction between
nodes indicates flow of
decomposition, away from
root nodes and toward
leaf nodes of decomposi-
=2

tion trees.

A

DECREASING PRIMITIVITY (DEGREE OF DECOMPOSITION)

A

primitive operations

- ® =primitive operations 1
} of a data level J

of lowest data level

i Figure 15
‘ Retroflexed Step Structure of HOS Data Levels

7
s

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900 '] ’

-

denote non-primitive operations of a data level. Movement
away from f produces increasingly decomposed operations (func-

tions, mappings, etc.), i.e., an increasing degree of primi-

tivity of the operations/functions involved. Movenent towards
f produces increasingly abstract or complex (decomposable)

operations/functions, culminating in £ itself.

In Figure 16, we elaborate this structure somewhat for a sys-
tem with three data levels. As in Figure 15, filled circles
in Figure 11 denote the primitive operations of a data level,
while filled squares denote non-primitive operations of a

data level. Open circles denote non-primitive operations that
are needed in the intermediate levels of a decomposition treeg
These are described in terms of the three primitive control
structures of HOS (composition, set partition, and class parti-
tion,as illustrated in Figure 13) or in terms of abstract
.control structures that are definable in terms of the three
primitive control structures, as we mentioned in Section 4.
Trees witb solid branches are horizontal trees, which decom-
pose non-primitive operations of a data level in terms of
primitive operations of the same data level. Trees with

dashed branches are vertical trees which decompose primitive
operations of a data level in terms of non-primitive opera-

tions of the next lower data level. Note that primitivity of .
operations is a relative notion, defined with respect to the
data level an operation 1is defined on.

Now we are ready to solve the security problem. Clearly, if
we are not interested, for some reason, in the data-level ‘
; structure of a particular f that has been decomposed as in ?j
' Figures 15 and 16, then we can "fix" f in space, as it were,
and "pull the rug out" from under the lowest data level, so
that the filled nodes in the diagram act as pivots and the
entire system stretches out into one gigantic tree structure, P
as in Figure 17 . In conjunction with the HOS axioms, however, ii
) 9

i

Note that HOS levels are defined relative to a controller,) l

or parent module, whereas Robinson's are not. See [Ham76a,b,c]. [
i

55

o
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900 Y

- o ————a

PN

Primitive Operations
of Data Level 2

Non-primitive Operations
of Data Level 1

Primitive Operations
\ of Data Level 1

Primitive dperations
of Data Level 0 (and
of the System)

Non-primitive Operations
of Data Level 0

Figure 16

HOS Decomposition of Function f with Three Data Levels

56

HISHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

g am

Primitive Operations
of Data Level 2

Non-Primitive Operations
of Data Level 1

Primitive Operations
of Data Level 1

7 N
je R
\ /7 0\
/ / \
’ \ / \

Non-Primitive Operations
of Data Level 0

system)

Figure 17

De-Retroflexed HOS Decomposition of Function £

(7]
~1

v o ag e e cat egengBdials. o apmal Lo B Saniat M

Primitive Operations of
Data Level 0 (and of the

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 .

(617 661-8900

) g

.

-~

this fact automatically provides us with the solution to the

security problem.

Consider Axioms 3 and 4, in particular (Figure 12 . These are
the axioms that specify the access rights in an HOS system and

would thus be expected to have something to do with security.
Axiom 3 states that the access rights to the output of a func-
tion in a tree like that of Figure 17 are controlled by, and

only by, its parent node ("module", in the axiom), i.e., the
node immediately above it. Axiom 4, similarly, states that the
access rights to the input of a function in such a tree is

also controlled by and only by, its parent node. A given func-

tion can look at data only if its parent allows it to, and

it must dispose of its results, again, only as its parent allows
it to. It follows that the flow of control in an HOS system

is always from the top down.

The flow of information, however, is always from the bottom up.

A given ncde performs its function by having its offspring
nodes, i.e., those on the immediately lower level, perform

the function for it. This, in fact, is precisely what de-
composition is really all about.: Decomposing a function is

just a formalized version of delegating responsibility. i

If someone can perform a task all by himself, then there is
no point in delegating that task to subordinates. If respon-
sibility is delegated, then he performs his task precisely by]
guaranteeing (via control, that his subordinat~s perform theirs.
Formally, the offspring nodes look at the data that the parent
allows them to (Axiom 4), perform their functions on that data
as input, and then dispose of that data as the parent requires
(Axiom 3), i.e., either by reporting it directly to the parent @»
or by passing it on to an appropriate sibling. In particular,
a given function has no idea what higher-level functions are
doing. It just chugs along, turning input into output, dis-

posing of that output as its parent tells it to. It is aware
of what its offspring (or perhaps, siblings) are doing, however,

58

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-890.

30 e (e

" N

-

because that is precisely where it gets its input from in

the first place.

The distinction between variables and values becomes very im-
portant here. Control is defined in terms of variables, but
information is defined in terms of values. A node controls

the access rights of its offspring to variables. The node

tells the offspring what variables they can look at ané what
h variables they must report back about. The offspring thus
get their variables from the parent. This is the sense in
which control flows downward. The parent node has no idea

|
what the values of those variables are, however, until it gets :
those values from its offspring. The parent tells an offspring !
what variable to look at; then the offspring looks at the vari-~ '
able to find its value, operates on that value as input to
change it into a value of an output variable, and then reports :
that value (either to a sibling or) back to the parent. Thus,
while parents tell offspring what variables they can look at
and assign, it is the offspring that tell the parents what the

values of those variables are. It follows *hat information

LEIT

Jix

can flow only upward, precisely, in fact, because control
flows downward, as stated in Axioms 3 and 4.

Our proof that information flows only upward in an HOS system
required us to use the de-retroflexed tree in Figure 17, be-~
cause the HOS axioms are stated in terms of trees (control
maps), not in terms of retroflex trees, like the data-leveled
structure in Figure 16. Since Figure 11l is functionally equiva-

lent, however, to Figure 17, differing, in fact, only in its ;

arrangement on the page, our proof of upward information flow
is also valid for Figure 16. L
i

The significance of this result cannot be overemphasized.

As we saw in connection with Walter's M a secure system is '

OI
one in which the repositories (data) and agents {(functions)

are ordered in such a way, and the access rights of the agents “

: : 59
g ‘ » 9
" '
\d

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

L - - e e e oo . P . .

(functions) to the repositories (data) are assigned in such a
way, that information can flow only uprard in the ordering. What
we have shown here, however, is that, if a system is specified |
in accordance with HOS, then its functions (agents) and .data
(repositories) are so ordered, and the access rights of the func-

tions (agents) to the data (repositories) are so assigned, that
information does always flow upward in the ordering. In other
words, systems specified in HOS are automatically secure, without

the need for any further paraphernalia to guarantee the security
for us.

It follows that we have completely solved the security problem.
If software is specified in HOS, then it is secure. It is

e — e .
———

that simple. Our proof of this fact also enables us to re-
fine our discussion of HOS somewhat, and it would be worth ;
while to pursue this opportunity a bit. We saw earlier that i
systems have a dual character in two distinct senses. On :
the one hand, a system is a function, since it performs a

function, and it is also a datum in that it exists at all.

On the other hand, a system consists of both data and func-

T

P

tions and these two components are inseparable. What our
proof of security makes clear, furthermore, is that each of
these components has a dual character as well, and again,
in two senses, when actually put together into a system.

A function in a system decomposition is a controller, because
it controls the behavior of its offspring, in accordance with
the axioms of HOS. It is also a performer, however, because
it carries out the mapping of its parent. Every function
plays both roles and the very fact that it plays one is the
reason it must also play the other%o Data types also serve
in two capacities in system decompositions. Every data type
involved in a system decomposition provides both the input

of one function and the output of another. "In" and "out"

-

are as diametrically opposed as any two things can be, but,

l%rimitive operations are also controllers (potentially), because we can 1
always add a lower data level in which they are decomposed. Similarly,
the highest-level function in a system is also a performer (potentially),
because we can always use a system as a subsystem of some other system.

60

i HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-89C. 1

-

again, we cannot have one without the other.

Our components are also dual-natured in a second way. On
the one hand, data have a constant aspect, as individual ob-

jects that can serve as inputs or outputs of functions, but,
on the other hand, they have a variable aspect, because they
exist as the members of data types. A given datum is an in-
dividual object itself, but it is also a representative mem-

ber of a data type that can serve as a value of a variable
of that type. This dichotomy enables functions to play a

dual role in systems in a second sense as well. In Walter's
terminology, a function can observe functions at a lower level
of its decomposition tree by receiving data values from output

variables of those functions and can modify functions at a
higher level of its decomposition tree by providing data values a

to input variables of those functions.

On the one hand, therefore, functions act as agents, since =
they can observe lower-level functions and modify higher-
level functions. What really gets observed and modified by
these agents are the output variables of the respective func-

tions with the modification occurring via the use of the input
variables, so it is the output variables that serve as the
repositories“of the system. On the other hand, the input

variables also function as agents because it is they that
give the relevant values to their functions to use in modify-
ing the values of the output variables. 1In general, in other
words, it is the complete functions themselves~-mappings, do-
E mains, and ranges, with the latter two represented by variables--
| that act both as agents and repositories in an HOS system.

R et

It follows that we not.only do not have to distinguish between
repositories and security classes, as we saw earlier, but we

do not really even have to distinguish between repositories

and agents either. Since a function all by itself already

61
L N

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900 '

e e it e).

Y

77 PY

has a dual character, being made up of a mapping and two data
types, functions themselves can play both roles. When func-
tions occur in a tree, they can observe and modify other func-
tions and they can also be observed and modified by other func-
tions. Since they occur in a tree structure in any system,
the functions themselves, and therefore the "agents" and "re-
positories," which the functions, are, are partially ordered,
(and thus also pre-ordered), just as Walter wants them to be.
A function in a system is both an agent and a repository

and, since it occurs in a tree structure, can also serve as
its own security class. This is about as cozy an arrangement
as we could possibly want and, as we have seen quite clearly,

it is absolutely secure.

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-890.

. e & By . e
WL P s i

-3
i

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

M ke

-

-

6. SOFTWARE, SYSTEMS, SEMANTICS, AND BEYOND...

In most real scientific breakthroughs, the applicability,
usefulness, and explanatory power of a new theory goes well 31
beyond the restricted kind of problem it was originally :
intended to solve. All such developments clearly exhibit

the contradictory aspects of similarity and difference, of ;
continuity and change. Major breakthroughs always bear I
strong similarities to existing theories, but differ from f
them in key respects whose logical implications turn out to

make all the difference. i

These sorts of characteristic are clearly evident in the case i
of HOS as an approach to systems theory. We have seen that, .j
while HOS was originally developed for the specification of
reliable software, it turns out to provide automatically i
.the solution to the security problem as well. Many HOS concepts]
look very much like the notions contained in other theories. " 4
Very close examination reveals, however, that HOS differs
from other formulations in precisely the ways that are re-
quired by the problem the theories are trying to solve.

What results is a completely adequate methodology. for the
specification of software systems that are reliable and

secure.

In fact, what results is much more than that. HOS seems 1
capable of providing insight into problems that are well

beyond its intended field of software engineering. There
is nothing in HOS, in other words, that requires us to ;
restrict its use to specifying software systems. As a ;
general systems theory, HOS can be fruitfully applied in any .
field in which systems can be seen to be playing a role. ?
George Miller has suagested to us (personal communication) l
that HOS control hierarchies might be useful in accounting
for the behavior induced by operant conditioning, and we

have ourselves been investigating its usefulness as a tool

63 , *

s

in analyzing natural language. The HOS distinction between
data and functions, for example, can be interpreted as pro- :
viding a semantic model, in the sense of Wilson [Wil76]., '
[Mill76). Wilson's own semantic model, illustrated in Figure 18, j
is considerably less general, recognizing seven modes of exist-
ence, which he calls "concept types": objects, properties,
relationships, events, actions, procedures, and sets. Such

a model would certainly be useful for many purposes, but its
limited generality cannot help but conceal significant generali-
zations that might help to simplify specific system specifi- |
cations and suggest alternate implementations. Wilson's ;
model represents a number of possible implementations of i;
the HOS model at a lower level of generality. His "object ’
classes," "property classes," "relations/attributes," and

"sets," for example, could represent a particular selection
of data types, with "events," "actions," and "procedures"”

corresponding to different classes of functions. The former, P
after all, represent things that are (be), while the latter i,

Poragh

represent things that do.

il e AR

The data/function dichotomy could be distributed amdng Wilson's
seven "concept types" in other ways as well, but the guestion
that immediately strikes one on first coming across his model
is that of why he chooses these seven in the first place. The

problem with Wilson's semantic model, in other words, as a general

systems (or semantic) theory, is that it is essentially ad hoc

and, therefore, of limited generality. Actions certaile—_ T

constitute events, for example, so they could be subsumed |
under them. Reversing direction, we could elaborate actions

further, distinguishing them into transitive and intransitive L
actions, perhaps. Properties, similarly, could be taken to

be one-place relationships, as they often are. The point is
that Wilson's theory provides no natural mechanism with which
to make the plethora of such decisions that might arise in 0
specific cases of system design. The number of "concept
types" is stipulated to be seven, in the theory itself, and

that is that. HOS, in contrast, distinguishes only between

64
HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617} 661-8900

"'IIIIIIIIII=====;~_“____.;E&_*~_~,4.._;!!E!IIIllIIlllll.'..IIlllllIllllHllIIIll'l_I.nt_*

CONCEPT TYPES

nstances

Classes (Abstracted from !Instances)

objects
properties
relationships
events
actions
procedures
sets

object classes
property classes
relations/attributes
event classes

action classes
procedure classes
set classes

CERTAIN KEY RELATIONSHIPS BETWEEN CONCEPTS

INSTANCE of /CLASS of

SUBCLASS of/SUPERCLASS of
COMPONENT of SUPERCOMPOSITE of (PART/WHOLE)
MEMBER of /SET MEMBERSHIP of

SUBSET of/SUPERSET of

Figure 18. Wilson's Semantic Model [Wil76, p. 7]

i
1 8
] HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

65

. 4%

a3

- ———— e~

data and functions, while permitting any instance of either

to be also an instance of the other. Given this generality,

we can begin restricting things anyway we like for any parti- ,
cular problem: three special data types and four classes of |
functions, two special data types and six classes of func-
tions, ten special data types and one class of functions, etc.
Once we let ourselves get more concrete than simply being
versus doing, in other words, there is no clear general
criterion for what our categories, modes of existence, or
cbncept types should be, because each application or class

of applications will favor a different choice. An adecuate
general systems theory must be formulated at the highest level
of generality, so that no possibly desired choice of imple- ,
mentation will be ruled out, or made intrinsically more dif-
ficult, ahead of time. !

it ot a e

———— e L

By distinguishing only between data types and functions, in
other words, HOS lets each particular more or less concrete
application select exactly the specific data types and func-
tions it needs, rather than arbitrarily stopping the theory
short at a lower level of generality, and possibly ruling
out the optimal choice of data types and functions for a
particular application. The point here is not that Wilson's
semantic model is wrong, but that, unlike HOS, it is not

! fully general, and, therefore, not fully adequate.

One final point remains to be made before we close. The
reason that system specification has been such a difficult

thing to figure out is that, as we have seen, a system is an.
intrinsically contradictory object. On the one hand, a

system is a single object; on the other hand, it is made up
of manv different objects. On the one hand, a system performs
it f i S

a function on objects; on the other hand, it is an object on

which functions can be.performed. On the one hand, a system
consists of two distinct kinds of objects, functions and data:
on the other hand, functions can be data and data can be

66
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

functions, so only one sort of thing is really involved. 3
A datum can be an input to a functicn, but it can be so only '
by being an output to a function, and vice versa. A fuaction
controls other functions, but it also gets controlled by
another function. A datum is an individual object, with a

P

constant aspect, and also a representative of a data type, with

a variable aspect. Functions are defined in terms of vari-

ables, i.e., representatives of data types, but operate on

constants, i.e., individual data, and so on.

oo Given all these twists and turns on the road tc specification,
' it is not surprising that so many have lost their way. The
uniqueness and power of HOS consists precisely in the fact

that it manages to resolve all of these conzradictions in one

-y

fell swoop and makes them comprehensible.

67

]
HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617 6616300

[Cus77al

[Cus77b]

[Ham76a]
[Ham76b]
[Ham76c]

[Ham77]

[Lind76]
[Mill76]
[Par72al
[Par72b]

[Robi75]

[Robi77]

T

REFERENCES

Cushing, S. "A note on ecuality in AXES data-type
specifications" (in preparation).

Cushing, S. and Heath, . "ARO operating system,"
ARO Memo #1. Cambridge, Mi4: Higher Crder Software,
Inc. (hereafter cited as HOS, Inc.), April 7, 1977.

Hamilton, M. and Zeldin, S. "AXES syntax description."”
TR-4. HOS, Inc., December 1976.

Hamilton, M. and Zeldin, S. "Eigher crder software--
a methodology for defining software." IEEZ Trans-
actions in Software Encineerinc, Vol. SE-2, No. 1,
March 1976.

Hamilton, M. and Zeldin, S. "Integrated software
development system/higher order software conceptual
description." Version 1. EOS, Inc., November 1976.

Hamilton, M. and Zeldin, S. "“The manager as an
abstract systems engineer." TR-5. HOS, Inc., June
1977. (To be presented at the COMPCON 77 Fall Con-
ference, conducted by the IEEE Computer Society,
Washington D.C., September 1977.

Linden, T. A. "Operating system structures to support
security and reliable software." ACM Computing
Surveys, VIII, 4. December 1976, pp. 409-445.

Mills, H. D. and Wilson, M. C. "An introduction
to the information automat." Gaithersburc, MD: .
IBM, May 7, 1976.

Parnas, D. L. "A technique for software module
specification with examples." Communications of
the ACM, XV, 5. May 1972, pp. 330-336.

Parnas, D. L. "On the criteria to be used in
decomposing systems into modules.” Communications
of the ACM, XV, 12. December 1972, pp. 1053-1058.

Robinson, L., et al. "On attaining reliable soft-
ware for a secure operating system." Proceedings,
International Conference on Reliable Software, Los
Angeles. April 21-23, 197:5.

Robinson, L., et al. "2roc? technigues fcr
hierarchically structured rrograms." Comrunications
of the ACM, XX, 4. April 1977, pp. 27.-283.

69

iy

e damincn. canind

:
;
i
s
5

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

[Walt75] Walter, W. C., et al. "Structured specification of
‘a security kernel." Proceedings, International Con-
ference on Reliable Software, Los Angeles. April 21-
23, 1975.

[Wil76] Wilson, M. L. "The information automat approach to

design and implementation of computer-based systems."
Gaithersburg, MD: IBM, April 1976.

VAR

70
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

!
l
E
| X
| :
fs
‘? I
Section III
SOME DATA TYPES FOR OPERATING SYSTEMS ;a
by
S. Cushing and' W. Heath
;
S
|
l.
! 3
1 I8
|
|
|
l)
. |

In "AXES Syntax Description*", we provided alcebreic specifications

for six intrinsic abstract data types: booleans, properties, sets,
1 naturals, integers, and rationals. e have now develcped algebraic
specifications for a number of other abstract data types that are

of particular usefulness in the specification of operating systems

|

!

and other machine-dependent software. These include time, address, ?
and two varieties of priority queue. L
i

. . : . . , . . 1
Time is an essential data type in any information processing sys- 53

tem. It makes possible the scheduling of internal processes and

I
provides an interface between the computer and externzl events. “
The essential characteristics of times are that thev can be dis- ‘
tinguished from each other (this is a universal characteristic
of all data types, as far as we can tell); that they are linearly
ordered, so that given two different times, one always precedes

the other; and that they support a notion of time flow. ﬂ

The data type TIME can be specified in AXES as in Figure 1. 1In A
the specification, Advance is the Pprocess of becinning at the .
time indicated by the first argument and advancinc by the amount
of time indicated by the second argument. Notafter is the rela-
tion that holds between two times if the first is earlier or
simultaneous with the second. Equals is the relation of equality.
Using Notafter, rather than something like Precedes, simplifies
) the axioms considerably. Precedes can be defined later as an

operation.

Axioms 1-3 characterize equality simply as an egquivalence rela-

tion, because the conceptual structure of the time notion is not
rich enough to support a specific equality relaticn, such as the
one on naturals or, as we will see, on cueues. 2xioms 4-6 impose
a partial ordering on times and Axiom 7 makes the orderino total
(linear). Axiom 8 characterizes Notime as the tire fer which

Advance has no effect:. Axiom ¢ savs that Advance is commutative,

and Axiom 10 says it is associative. Axioms 8 and 9 fogether

* .) .
M. Hamilton and S. Zeldin, "AXES Syntax Descripit:ion", Tk-4.
Higher Order Software, Inc., Cambridge, MA, Dec. 127¢.

® 1
. HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900
A) -
. .

e g7 " h oo
i sl g

- - IR O NP0 S SR

DATA TYPE: TIME;

PRIMITIVE OPERATIONS:

tlme3 = Advance(tlmel,tlmez):
boolean = Notafter(timel,timez):
boolean = Equal(timel,timez);
AXIOMS:

WHERE t,t,,t,,t, ARE TIMES; ;
WHERE Notime IS A CONSTANMT TIME; '

1. Equal(t,t) = True; 5
= . i ~y

2. Equal(tl,tz) Equal(tz,tl), r
3

. 3. Entails(Equal(tl,tz) & Equal(tz,t3), Equal(tl,tB)) = True; ?%

4., Notafter(t,t) = True; !

5. Entails(Notafter(tl,tz) & thafter(tz,tB), Notafter(tl,t3)) =
True;

6. Entails(Notafter(tl,tz) & Notafter(tz,tl), Equal(tl,tz)) =
True;)

7. Notafter(tl,tz)! Notafter(tz,tl) = True;

8. Advance(t,Notime) = t;
91 Advance(tl,tz) = Advance(tz,tl);)
10. Advance(tl,Advance(tz,t3)) = Advance(Advance(tl,tz),t3);

11. Notafter(Advance(tl,tz),tl) = Notafter(tz,Notime):
END TIME;

ol

Figure 1

Data Type TIME

HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

-

guarantee that Notime behaves both as a time origin and as a null

time increment. Axiom 1l relates Advance to the linear time order-
ing.

Addresses are necessary in computer-dependent software in order
to keep track of storage locations. Addresses can be implemented
as coordinates in a reference frame, as naturals indicating an
order in a list of storage cells, as regions in a map, or as

any number of other things, but all of these are irrelevant to
the characterization of addresses as addresses. Addresses

need not even be ordered, as long as we can tell which address

is which. The regions of a map, for example, serve satisfactorily
as addresses as long as we can tell which region on the map cor-~
responds to which region in the mapped area, as in Figure 2:

T m—
CAMBRIDGE
« WATERTOWN
uaTeR. | CAMBRIDGE o]
TOWN . BROOKL INE
‘ B ,
BROOKL I NE OST
WELLES=] o Oy
LEY
. NEWTON WELLESLEY
BOSTON
4
MAP &y
MAF Yoy
WORLD
FIGURE 2

ADDRESSES IMPLEMENTED AS MAP REGIONS

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

Size and shape can be transformed beyond recognition, but the

map regions still serve adequately as addresses as long as the
transformation is topological and the correspondence is preserved.

The only reaquirement that needs to be made on addresses, in fact,
is that we be able to tell them apart. This gives us the AXES
specification in Figure 3. Since all we need is to be able to
tell two addresses apart, eguality is the only primitive opera-
tion. As with data type TIME, we characterize equality simply

as an equivalence relation, because the conceptual structure

of the ADDRESS type will not support a more specific relation.

Two forms of priority queue have been characterized algebraically
and are now available for use in system specification. The dif-
ferences between the two forms of queue, the strict priority
queue and the flexible priority queue, are illustrated in Figure
4. Each of the gueues in Figure 4 contains six items (presum-
ably, jobs or processes), with corresponding items having equal

priorities. Flow through both is from right to left, with the only
exit point in each queue being at the left of the queue. The gueues

differ only in the points at which items may enter the queue.

In Figure 4a, entrance is strictly by priority; an item may enter
the éueue only at a point to the left of all items of lower
priority and to the right of all items of the same or higher
priority. Giver a particular queue or state of a queue, a new
item's entrance point is determined entireli by its own priority.
No options are available.

In Figure 4b, entrance is bounded by priority, in the sense that
an item may not enter ‘the queue at a point to the left of any
job of the same or higher priority; it may enter the queue at
any point to the right of the rightmost item that has the same
priority, if there is one, or the item of next hichest priority,
otherwise. Given a particular gueue or state of a queue, a new
item may enter anywhere to the right of the point determined by
its priority.

4

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

-

i

DATA TYPE: ADDRESS;
PRIMITIVE OPERATIONS:

boolean2 = Equal(addresslraddressz);

AXTIOMS:

WHERE Al'AZ ARE ADDRESSES;

1. Equal(Al,Al) True;

. 2. Equal(Al,Az) Equal(Az,Al):
3. Entails(Equal(Al,Az) & Ecual(Az,A3), Equal(Al,AB)) = True;

END ADDRESS;

e ——— e

Figure 3
Data type ADDRESS

RS-

&

5
o

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

- T -~

-~ v
e : . X).

- Lot g cye

coag 4

",.-»P-. - e eSO ST e

¢

-

PRIORITY PRIORITY PRIORITY PRIORITY PRIORITY PRIORITY
17-24 16 12-15 9-11 3-8 1-2
} ! 1 : B
| {
PRIORITY | PRIORITY ¢ PRIORITY | PRIORITY | PRIORITY { PRIORITY

- et emsmnu—
: 24 | 16] 15 | n | 8 | 2

| I | | l

| 1 1 1]

g

(a) STRICT PRIORITY QUEUE: Entrance strictly by priority; arrows show
exit point, entrance points, and direction of flow through queue.

PRIORITY PRIORITY PRIORITY PRIORITY PRIORITY PRIORITY
17-24 16-24 12-24 9-24 3-24 1-24
1] I | 1 1
I | | |]
PRIORITY :PRIORITY =PR|0RITY : PRIORITYII PRIORITY : PRIORITY
24 16] 1 8
| I i 5 ;! 1) 2
i 1 . 1 i |
i

(b) FLEXIBLE PRIORITY QUEUE: Entrance bounded by priority; arrows show
exit point, entrance points; and direction of flow through queue.

FIGURE &4

TWO FORMS OF PRIORITY QUEUE
‘ 6

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

S

VSl e S

N ol

With a strict priority queue(Figure 4a), we automatically know
where an item must enter, once we know its priority and the
current staie of the queue. With a flexible priority cueue
(Figure 4b), we know the leftmost point at which an item may
enter, when we know its priority and the state of the queue, but
we must then specify on some basis other than priority where to
the right of that point we actually want it to enter.

It must be stressed that the "entrance points" in Figure 4 are
abstract, in the sense that they micht not actually appear in a
particular implementation of data type PRIORITY QUEUE. A priority
gueue may be implemented in a form that actually has different
entrance points, as in Figure 4, but it may equally well be im-
plemented in a form that has only one entrance point at the right,
as in a simple queue, with entrance being followeé by a process
that rearranges the queue in the appropriate way in accordance
with the priority of the entering item. How the data type is
implemented in an actual machine is irrelevant to the character

of the data type as a data type. The important thing is that, once

the queue-entering process, whatever that may involve, is com-
pleted for a particular entering item, the items are arranged

in the queue correctly according to priority, along the lines

of ligure 4.

Figure 5 contains an AXES specification of the flexible priority
queue and Figure 6 contains an AXES specification of the strict
priority queue. To make comparison easier, we have used the same
notation for both., If both queues are actually used in a system
specification, each should be provided with its own notation

to avoid confusion. For example, Front could be called Flex-
Front for the flexible priority queue, and SFront for the strict
priority queue. Note that Priority is an operation defined on
type JOB, which is not included in this memorandum.

The operation Add in these specifications is that of adding an
item to a queue. Note that the two specifications differ only
in that the Add operation for the flexible priority queue re-
quires a natural numberr as one of its arguments, whereas the

-

/

HIGHER ORDER SOFTWARE, INC, + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

inca -

R e ---u!!!ll,!Illllll!l!-!!ll-llllnI-l!--!---~""-q

-

DATA TYPE: QUEUE;

PRIMITIVE OPERATIONS:

queue, Add(natural,job,queuel);

]

queue, Remove (queue,) ; ’

job = Front(queue);

boolean = Equal(queuel,queuez);
natural = Size{queue);

WHERE Nullg IS A CONSTANT QUEUE;
WHERE q,q,,q, ARE QUFUES;

WHERE j,j,,j, ARE JOBS;

WHERE Capacity IS A CONSTANT NATURAL;

AXIOMS: |)
|
.‘
|

‘1. Front(Nullg) = REJECT;

2j AND Front(3q);

. _ 1,.
2. Front(gdd(n,J,q)) = KREJECT((j,q)) AND

3. Remove(Nullq) = REJECT;

. 1. 2
4. Remove(Add(n,j,q)) = Kppipap((3,q)) AND “q

AND Add(n,3j,Remove(3q));

PARTITION OF (j,q) IS
‘l(j,q)|>(n,Priority(j))!'Size(q)ZCapacity, _ C
2(j,q)Ii(n,Priority(j))&(Equal(q,Nullql!>(Priority(j), |
Priority(Front(q)))) & Size(q)<Capacity, g

3(3) |<(n,Priority (j)) sNot (Equal(a,Nullg)) &< (Priority (j),

Priority(Front{(qg))):& Sizec(q)<Capacity;

Figure 5
Data Type FLEXIBLE PRIORITY QUEUE

HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

5. Equal(Nullg,Nullqg) = True; 4 !

6. Equal(Nullg,Add(n,j,q)) False;

7. Equal(add(n,j,q),Nullqg) False;

8. Equal(Add(nl,jl,ql), Add(nz,jz,qz)) = Equal(nl,nz) & Equal(jl,jz)
& Equal(qg;,9,);

9, Size(Nullag) = Zero;

. . _ (3 4
10. Slze(AddSn,J,Q)) = Succ(Size(°qg)) AND KREJECT(q);

PARTITION OF q IS
3 : .
al<(size(q), Capacity),
4Q*Z(Size(q), Capacity);

END QUEUE;

Figure 5 /
Data Type FLEXIBLE PRIORITY QUEUE (con't) ¥
i
]}, b
" E
&
:
9
L,

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

. =

DATA TYPE: QUEUE;
PRIMITIVE OPERATIONS;
queue, = Add(job,queue,);
queue, = Remove(queuel)r

job = Front (queue) ;

boclean = Equal(queuel,queuez);
natural = Size(queue);
AXIOMS:

WHERE Nullg IS A CONSTANT QUEUE,

WHERE Capacity IS A CONSTANT NATURAL;

1. Front(Nullg) = REJECT;

: _ 1. 2 3 ..
2. Front(Add(j,q)) = ~j AND Front(“qg) AND KREJECT(al;

. 3. Remove(Nullg) = REJECT;

4. Remove(Add(j.q)) = lq AND Add(zj,Remove(zq)) AND K (3q);

REJECT

PARTITION OF (3j,qg) IS

1(j,q)](Equal(q,Nullq)!>(Priority(j),PrioritY(Front(q)))) &
Size (qg)<Capacity,

Z(j’q)'(Not(Equal(q,Nullq))&i(Priority(j),Priority(Front(q))))
& Size(qg)<Capacity,

3(j,q)ISize(q)}_Capacity;

5. Equal(Nullg,Nullg) = True;

6. Equal(Nullg,add(j,q)) False;

7. Equal(add(j,q),Nullqg) False;

8. Equal(Add(jl,ql), Add(jz,qz)) = Equal(jl,jz)& Equal(ql.qz);'
9. Size(Nullqg) = Zero;

. . _ .1 . 2 on 1 3.4,
10. Size(Add(j,q)) = Succ(Size o)) AND Succ(Size(q))Am)kmmECT(q),

END QUEUE;
Figure 6

Data Type STRICT PRIORITY QUEUE
10

HIGHER ORDER SOFTWARE, INC. « 843 MASS

ACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 + (617) 661-89C

e

strict priority queue does not require such an argqument. The

number n tells us where in the queue an item (job) is being
inserted. 1In a flexible priority queue, n is bounded above by
the priority of the entering item, but is not bounded below.

In a strict priority queue, n is always identical to the priority
of the entering item and so does not have to be stated.

The Remove operation removes the "leftmost" item (i.e., the front
item, the one next in line to the exit point) from the queue.

The Front operation tells us which item that is. Equal tells

us when two priority gqueues are the same and Size tells us the

number of items in a gueue.

Axioms 1 and 2 characterize the interaction of Front, Add, and
Nullg, the empty queue. Axiom 1 says that Nullg has no first
item. 2Axiom 2 in Figure 5, along with the set partition, says
that we cannot add an item to a queue at the position determined
by priority n if n is greater than the item's own priority.

Note that this condition is absent from Figure 6. In both figures,

Axiom 2 says that if we add an item to a priority gqueue at an
(the) appropriate position, then the new front item is the added
item, if the o0ld queue was empty or had a front item of lower
priority than the added item, and is the old front item, other-

wise.

Axioms 3 and 4 characterize the interaction of Remove, Front, and
Nullg and are predictably similar to Axioms 1 and 2. Axiom 3
says that we cannot remove an item from the empty gqueue. Axiom 4
in Figure 5 says essentially the same thing as Axiom 2, if n is
greater than the priority of the entering item. Again, this
condition is absent from Figure 6. In both figures, Axiom 4

says that adding an item to a queue and then removing the front
item from the new gqueue produces the old queue if the o0ld gqueue
was empty or had a front item of lower priority than the added
item, and produces the same result as adding the new item to the
old queue with its front iter alreadv remnoved, othervise.

11

HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

© e mm ey

- -

Axioms 5-8 characterize equality specifically for priority queues.
Although the axioms for an eguivalence relation follow from
Axioms 5-8, the latter axioms narrow this relation down even fur-
ther to equality. The conceptual structure of the notion of
priority queue, unlike that of time or address, is rich enough

to support such a characterization, as the axioms show. Axiom 5
says that Equality holds of Nullg and itself while Axioms 6 and 7
say that Equality fails to hold of Nullg and any queue that arises
from the Add operation. Axiom 8 says that Equality holds of two
queues that arise from Add, if and only if the added items were
egual, were added to queues that were themselves egual, and vere

added at the same position in those queues.

Axioms 9-10 finish out our specification of priority gueues by

characterizing the notion of queue size. Axiom 9 says that the

empty queue is of size zero, while Axiom 10 says that adding

-an item to a queue increases its size by one, unless the original

queue was already filled to capacity, in which case the ADD

operation REJECTs. Note that Axioms 2 and 4 tell us, through the

Size-Capacity relationship in the partition, that both Front and
Remove REJECT when applied after Add, if the original gueue was
too large to be added to in the first place, i.e., if it was al-

ready filled to capacity.

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . {617) 661-8900

Section IV

SOME SPECIFICATIONS FOR THE
OPERATING SYSTEM OF THE
APOLLO GUIDANCE COMPUTER (AGC)

by
W. Heath

T

] . TABLE OF CONTEXNTS

SECTION PAGE

1.0 INTRODUCTION - © « v v e oo e e e e e 1 ‘ :

2.0 WAITLIST SYSTEM SPECIFICATION. 9

TASK QUEUE. o oo oo 12

t
|
!
2.1 Waitlist System Data Types. }
|

TASK ENTRY.« o . v v v it e e o 17 |

2.2 Waitlist System Operations. « . . . « . . 19 A 5
| Preceeds?ol 22 ;
Reverse 0000 22 [
Regress « . . ¢ . e o e e e e e e e e 22 :
{ New Task Entry.« .. 23
Update Waittime 23 ;

Pop First Task.« . . oL 23

e
VEa—

Counter_Interrupt 24
T3rupt. . .« . . oL Lo oo e e 25
Taskover.o o o0 e o 26
Longcall. « . . .o 000w e e e e 26
Longcvcle .
Taskcall.00 e e e 27

EXECUTIVE SYSTEM SPECIFICATION 29

3.1 Executive System Data Types « « . . . 31
JOB QUEUE e 32
JOB ENTRY o . . . o o oo 39
PRIORITY. . . « .« « v v v v v v e v e e o e e 42
TUPLE . .+« v v v v v e e e e e e e e e e e 43
STACK .« . v v v v v v e e e e e e e e e e e 45

(93]
o

. HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - {617) 661-8900

TABLE OF CONTENTS (continuation)

ekt it

SECTION PAGE

3.2 Executive System Operations 47
Findvac e e e e e e 49
NOVEC . v v v v . o e e e e e e e e e e 49
Novac2 oL 50
New Job Entry 50
Change Job 51
Jobsleep L0 51
Go To Sleep« . 0o e 52
Jobwake00 oo 52
Wake Up 52
Set_Sleep_Stateo 0.0 . 53

Asgn Loc&Bankset 53
Priochng e 54
Endofjob 55
New Job Yet?,, 56

ii

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

. o ea?
! IR URPP T | P00 o e A

1.0 INTRODUCTION

What follows is the HOS specification of the operating system of .the
Apollo Guidance Computer (AGC). The AGC is a real-time control computer

used to control the Apollo spacecraft.

The Apollo Guidance Computer is the heart of the Guidance,
Navigation and Control System for the Apollo Lunar Module (LM)
and Command Module (CM). The software maintains positional
knowledge of the vehicle in space, determines the path to a
desired destination, and steers the spacecraft along that
path by sending commands to the engines. It communicates
with the astronauts and the ground, and monitors the per-
formance of the GN&C System. Mission programs, such as
rendezvous, targeting and landing, control some of the

phases of an Apollo flight.

Storage and Manipulatinon of Computer Instructions

The AGC contains two distinct memories, fixed and erasable,
as well as various computer hardware. The fixed memory is
stored in a wire braid which is manufactured and installed
in the computer. This memory cannot be changed after
manufacture and it can only be read by the computer. Fixed
memory contains 36,864 '"words' of memory grouped into 36
banks. Each word contains 15 bits of information (a sixteenth
bit is used as a parity check). The word may contain either
a piece of data, or an instruction which tells the computer
to perform an operation. A series of instructions forms a
routine or a program. In addition to storing programs, the
fixed memory stores data such as constants and tables which
will not change during a mission.

The erasable memory makes use of ferrite cores which can be
both read and changed. It consists of 2,048 words divided

into 8 banks. Erasable memory is used to store such data

as may change up to or during a mission, and is also used

for temporary storage by the programs operating in the computer.

Included in the hardware is a Central Processing Unit (CPU).
The CPU performs all the actual manipulation of data, accord-
ing to the instructions designated by a program. The 34
possible machine instructions include arithmetic operations r
(add, multiply, etc.) as well as logical operations, sequence :
control, and input/output operations. Also included are

a limited number of "double-precision' instructions which
permit two words of data to be processed as a single 'word"
of greater precision.

i ‘ 1
HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

-~

The memory cycle time (MCT) in the AGC is 11.7 usec. Most
single-precision machine instructions (e.g., addition) are
completed in two MCTs; most double-precision machine instruc-
tions are completed in three MCTs. The unconditional transfer-
control instructions, however, operate in one MCT.

To be used as an instruction, a computer word must specify the
operation to be performed and give the location of the data

to be operated on. However, a 15-bit word does not contain
enough information to specify 34 operations and 38,912 fixed
and erasable locations. In fact, 15 bits cannot even specify
38,912 locations unambiguously. It is for this reason that
both the fixed and the erasable memories are grouped into
banks. An instruction may specify any address within its own
bank, and may also address the first four banks of erasable
and the first two banks of fixed memory. Access to other
banks is accomplished using bank-selection registers in the
CPU. In many cases a program exists entirely within one bank of
memory, in which case bank switching is not required.

Many of the tasks the AGC performs can be adequately carried
out by machine instructions. However, for extensive mathe-
matical calculations in such areas as navigation,the short

word length of the AGC presents difficulties. It limits the
number of instructions available, the range of memory that can
be addressed without switching banks, and the precision with
which arithmetic data can be stored and manipulated. To
alleviate these problems, nontime-critical mathematical cal-
culations are coded in "interpretive language'" and are processed
by a software system known as Interpreter. Each Interpreter
instruction is contained in two or more consecutive computer
words. The increased information available allows more possible
instructions and a greater range of memory addressability without
bank switching. In fact, with some exceptions, all of erasable
memory and fixed memory may be addressed directly. Among the
available Interpreter instructions are a full set of operations
on double-precision quantities, including square root and
trigonometric functions, some triple-precision instructions,
and a set of vector instructions such as cross product, dot
product, matrix multiply, and vector magnitude. Interpreter
routines translate an Interpreter instruction into an equiva-
lent series of machine instructions to be performed by the CPU.
Thus, one Interpreter instruction may be equivalent to many
machine instructions, and much storage space is saved in the
computer. The Interpreter also contains software routines

for the manipulation and temporary storage of double- and
triple-precision quantities and vectors.

2

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

PO

e meg— e — e+~

atheichhchec

, Interpreter expands the processing capabilities of the CPU
; hardware. However, its operation is quite slow, since the
CPU must perform all the actual operations, and much time is

: spent in the translation of instructions and the manipulation
[of data. Although processing time is slower, much storage

: space is saved in fixed memory by the more powerful Inter-
preter instructions; thus, the vast majority of nontime-
critical mathematical computations are coded using interpre-
tive language. i

Timing and Control of the Computer

Two of the more stringent requirements placed upon the AGC are
the need for real-time operations and the necessity for time-
sharing of multiple tasks.

Certain computer functions must occur in real time. For
example, certain input data must be stored or processed
immediately upon receipt; and outputs, such as those which
turn the jets on and off, must occur at precisely the correct
time. An interrupt system causes normal computer operation
to be suspended while performing such time-critical tasks.

Several programs, which are less time-critical, may all be
required during a phase of the missicn. Time sharing between
these programs is controlled by a software executive system
which monitors the programs and processes them in order of
priority. The Executive can stop one job when a higher
priority job is necessary, then resume the low-priority job
when time is available.

ey v -,

i

Interrupt System

To permit quick response to time-dependent requests, the AGC
has a complex interrupt structure. There are two classes of P
interrupts, counter interrupts and program interrupts. Counter
interrupts have the highest priority of all AGC operations.
Counters are locations in erasable memory which can be modified
by inputs o1.ginating outside the CPU. Some counters are used

as clocks, while others interface with spacecraft systems to
receive or transmit sequences of data pulses. The counters
respond to a set of involuntary instructions called counter
interrupts, which may increment, decrement, or shift the contents
of the counters. A counter interrupt suspends the normal L
operation of the CPU for one MCT, while the instruction is

being processed. Except for the short time loss, the ongoing

program is not affected by the counter interrupt; in fact, it

is not aware that the interrupt has occurred. These interrupts ‘
are used solely for counter update and maintenance; their

priority assures that no information will be lost in the counters.

3 f
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

~e

-~

Two counters, designated TIMEl and TIME2, form a double-
precision master clock in the AGC. TIMEl is incremented
at the rate of 100 counter interrupts per second. - Overflow

of TIME1 triggers a counter interrupt to increment TIME2.
Since total time that must elapse before TIME2 overflows
exceeds 31 days, TIMEl and TIME2 are thus able to keep
track of total elapsed mission time.

The remaining clock-counters, designated TIME3 through

{ TIME6, measure time intervals needed by the AGC hardware and
software. For example, autopilot computations must be pro-
cessed periodically whenever the autopilot is in use. Before
reaching completion, these computations preset the TIMES
counter so that it will overflow at a specified time in the
future. When TIMES overflows, a signal sent to the CPU causes a
“program interrupt' which interrupts the program in process

and begins the autopilot computations once again.

Program interrupts have lower priority than counter interrupts, _
but greater priority than normal program operation. Unlike e
counter interrupts, the purpose of program interrupts is to

alter the normal processing sequence. There are 11 program ,
interrupts; they may be triggered by a clock-counter overflow,
as in the example given above, or by externally generated
signals, such as the depression of a key on the Display and
Keyborad (DSKY) by an astronaut. The occurrence of a program A
interrupt causes the computer to suspend normal operation at j <
the end of the current instruction. The current CPU data are P
saved, the computer is placed in interrupt mode, and control

is passed to a preassigned location in fixed memory. This

preassigned location is the beginning of a program which per-

forms the action appropriate to the interrupt. While the

interrupt program is running, the computer remains in interrupt

mode, and no additional program interrupts will be accepted,

although counter interrupts can still occur. (Requests for i
‘other program interrupts are stored by the hardware and pro-

cessed before returning to normal operations.) At the con-

clusion of the interrupt program, a "resume" instruction is

executed. If there are no other program interrupts, the CPU

is taken out of interrupt mode, the original contents are re- ,
stored, and the program returns to the point at which it was

interrupted. One program interrupt (restart) takes precedence

over all the others, and can even interrupt an interrupt. It &
results from various kinds of computer malfunctions.

A computation which takes place by means of a program interrupt
is called a task. Since tasks may not be interrupted, they

must be short to avoid delaying other tasks. This speed require-
ment precludes the use of interpretive language.

4 X

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

e

A job in process must periodically call Executive to scan the
list of waiting jobs, thus determining if any scheduled job
has a priority higher than itself. If so, the job currently
active is suspended and the higher priority job is initiated.
To permit suspension of a job and subsequent resumption at a
point other than its beginning, the working storage associated
with the job is saved when the job is suspended and restored
when the job is reinstated. A suspended job is returned to
the job list and is not reinstated until it has the highest
priority on the list. Eventually, a given job will run to
completion, at which time it is removed entirely from con-
sideration. When all jobs on the list have run to completion,
a "DUMMYJOB" with zero priority constantly checks to see if

| new jobs have appeared. (The computer also performs a self-

! check.)

S e v ey

The relative importance of a job may change for various
reasons. When this is the case, Executive changes the priority
list and rechecks the list for the job of highest priority.
Many times it is desirable to purposely suspend the execution ;
of a job, but not to terminate it completely. Temporary i
suspension is desirable to await an event such as the input

or output of data, or for the availability of a nonreenter-

able subroutine currently in use. To accomplish temporary f
suspension, Executive saves the job's interrupted registers g
and sets its priority to a negative value. Because the ;.
interrupted job has a negative priority, DUMMYJOB has priority .
over it. As a result, the job is, in effect, suspended in- ‘
definitely. Eventually, Executive is called to restore the
job, usually by the event for which the job is waiting.-
Executive restores the original priority and again checks the
list for the highest priority job. (This process is called
"putting a job to sleep.') :

Waitlist allows any program to schedule a task to occur at a :
specified time in the future. The TIME3 clock interrupts the

job in process at the correct time and initiates the task. (As

mentioned before, tasks initiated by the other program inter-

rupts are not controlled by the Executive.)

To schedule a new task, Waitlist requires the starting address
of the task and the amount of time which must elapse before
execution. Waitlist maintains a list of tasks waiting to run
in the order in which they will be performed and a list of L
time differences between adjacent items on the task list. It

determines when the new task will run in relation to others

on the list, placing it appropriately in the list,

s 6
E HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 + (617) 661-8300

One class of tasks is initiated by overflow of the time

counters TIME3, TIME4, TIMES, and TIME6. These are con-

sidered time-dependent tasks. The TIMES interrupt, described

described above, initiates autopilot computations at

precise periodic intervals. TIME6 controls the timing of

the autopilot RCS (Reaction Control System) jet firings. t
TIME4 initiates a series of routines which periodically

monitor the IMU, radar, etc., and process input/output }

commands. The TIME3 counter is under the control of the

software executive system (described below). It is

available for general use by any program needing to [
schedule a task for a specific time.

. l
A second class of tasks is initiated by interrupts caused f
by external action. For example, depressing a DSKY key i
initiates a task that begins processing DSKY readings

and storing the information for later processing. Telem-

etry and the radar also cause interrupts that initiate _
tasks to receive or transmit the next data word. '

Software Executive System !

Computation in the AGC is managed by a software executive :
system comprised of two groups of routines, Executive and]
Waitlist. This system controls two distinct types of
computational units, jobs and tasks. In its normal operat-
ing mode, the computer processes jobs. These are scheduled ?
by the Executive, according to a priority system. The !
Waitlist uses the TIME3 interrupt to schedule tasks for a 1
specific time in the future. (Tasks originated by the other
program interrupts take place independently of the software
executive system.)

Most AGC computations are processed jobs. Division of a
program into discrete jobs is at the discretion of the pro- !
grammer, who also assigns a priority to each job indicative
of its importance. The Executive can manage up to seven
jobs (eight in the LM program) simultaneously.

m e e ire, .

To schedule a job, the Executive places the job's priority
and beginning location on a list, assigning the job a set

of working storage locations called a core set. In addition,
if a job requires a larger working storage, as in the use of

interpretive language, a second area, called a VAC area, L
may be assigned. The Executive is capable of maintaining
seven core sets (eight in the LM program) and five VAC areas
as each is assigned to a job, and of redesignating them as
available when the job is finished.

5

HIGHER ORDER SOFTWARE, INC, «+ 843 MASSACHUSETTS AVENUE . CAMBRIDGE. MASSACHUSETTS 02139 . (617} 661-8900

The TIME3 counter counts the time to the first item on the y
list. When this time arrives, the TIME3 program interrupt !
occurs. TIME3 is immediately set to overflow when the time

has elapsed for the next task on the list, and all tasks and

times move up one position on the list. The computer re-

mains in interrupt mode until the task is completed. It is
then free to process other interrupts or return to the
original job.

Since TIME3 is a single precision AGC word (15 bits) that is ’
incremented 100 times a second, Waitlist can process tasks up
to 162.5 sec in the future. For longer delays, a routine
called LONGCALL processes a single task, the repeated calling
of Waitlist. LONGCALL can schedule tasks for as long as 745 ,
hours in the future, a time span larger than an entire Apollo !
mission.

Sequence Control

In normal AGC operation, the Executive maintains a constant
background of activity, while program interrupts break in for
short, time-critical bursts. The execution of a job is sub-
ject to numerous interruptions. A counter interrupt may
occur after the completion of any instruction. Program

b 2k

P

interrupts stop the job in process. While the computer is ¥
in interrupt mode, any further program interrupts are saved ¥
by the hardware and processed one at a time before returning X
to the job. Under control of the Executive, high-priority .

jobs also steal time from a job in process. This control
system of interrupts and priorities ensures that in times D
of heavy load, the most critical computations for the mission

will be processed first.

Normally, the CPU does not stop during periods of low activity.
If no jobs or tasks are being executed, the CPU executes a 4
short loop of instructions (DUMMYJOB)} which continually looks 4
for jobs to initiate. Periodically, TIME4 overfolows, initiat- i
ing a task to monitor various GN&C subsystems. If an auto-

pilot is in operation, TIMES triggers other interrupts for 1
autopilot functions. In addition, periodic counter interrupts

will occur as counter input is received and clock counters ,
are updated. More extensive computer activity awaits action]
by the astronaut.*

*

Abstracted from Johnson, M.S. and Giller, D.R. '"MIT's Role in

Project Apollo'", The Software Effort, vol. 5. Draper Laboratory, Inc.,
Report R-700, Final Draft, March 1971.

7

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

The HOS specification of the AGC operating system has been partitioned

into two sections. The first is the Waitlist System which controls the
execution of tasks. A task, as in the actual AGC software, is a short
brocess which runs to completion once started and is scheduled according
E to a specified time of exectution. The second section of specifications 3
is the Executive System whichk controls the execution of jobs. A job,

F again identical to the AGC definition, is a process of arbitrary length

which is established as a job when its function is desired and is

subsequently scheduled according to a priority that is specified for

the process, and is subject to interruptions for higher priority jobs.

Section 2 contains the HOS specification ot the Waitlist System. Section 3

contains the Executive System specifications.

A comment on notation: The symbols '"§" and "!'" have been used herein
to denote the boolean infix operators "AND" and 'OR", respectively.

8

* e o ity e e m——

; HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

- - - R el - . Wy b .

>

2.0 WAITLIST SYSTEM SPECIFICATION

The Waitlist System specification consists of a set of data type

J
|
|

specifications and a set of operation specifications. Section 2.1
contains the data types and section 2.2 contains the operations.
The use of the data types and service operations (those operations

accessible by the user) is outlined below.

Waitlist System Data Types:

e TASK QUEUE: A queue of requests for task
invocations. Task invocations are
ordered in the queue according to 1
their requested execution times. The

queue has a finite size and is updated

by the Waitlist System operations.

e TASK ENTRY: A storage device to perserve, for
entry into a TASK QUEUE, a task
identifier and the time delay for the

execution of the task.
3
Waitlist System Service Operations: [j
. $
¢ Enter Task: A primitive operation on the data

type TASK QUEUE. Enters a task

invocation request into the queue
for execution after its specified
time delay. (Corresponds to the AGC Li
program entries: WAITLIST and TWIDDLE,
where TWIDDLE is a different imple- B
mentation using a shorter form of]

% address reference.)

° 9
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (61 7) 661-8900

"o e

-

Kaitlist System Service Operations (continued):

e Longcall: Invoked to request the execution of
a task with a greater time delay than ;
the maximum allowable by the
TASK QUEUE. (Corresponds to the AGC
program entry: LONGCALL.)

e Taskover: Must be invoked at the completion of E
each task to determine if another
task is waiting for immediate execution.]
(Corresponds to the AGC program
entry: TASKOVER.)

o Counter_ W

Interrupt Invoked to synchronize the Waitlist
System with real time. The AGC

erasable register TIME3 is used to
keep track of the time delay until the

next required task execution. This

information has been incorporated into
the TASK QUEUE data type as the Delta T
value of the first TASK ENTRY in the
queue. In the specification, this
operation is invoked to decrement and :
test this time delay value.

(Corresponds to a hardware countev ;

interrupt in the AGC.)

e T3rupt . Invoked to service the TASK QUEUE and 2
present the task for execution when L
Counter_Interrupt indicates that a task
is ready to by executed. (Corresponds

1
| to the AGC program entry: T3RUPT, which

is a task itself that is executed in the
program interrupt caused by the overflow
of TIME3.)

10

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-80 °

-

2.1 Waitlist System Data Types

The data type specifications of the Waitlist System are contained
herein. Each specification contains the AXES syntax for the spec-
ification and appropriate explanations of the primitive operations
and the axioms of the data type.

11

HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

'!lll'IFllllllllllllll-!ll!lll-'llllIlIlIlllIlllll!lIll--"”'"“"""F""!'-"“‘”'

-

DATA TYPE: TASK QUEUE(n);

PRIMITIVE OPERATIONS:

task__queue2 Enter_Task(task_queue,,task_entry);

1!

task_queue Discard Task(task___queue1);

2
task_entry = First Task(task_queue)};
natural = Size(task_queue);
natural = Capacity(.task_queue);
boolean = Equal(task__queuel,task__queue2)
| AXIOMS:

- WHERE n,nl,n ARE NATURALS;

2
WHERE EmtyTskQ IS A CONSTANT TASK_QUEUE (n);
WHERE e,,e,se,ne ARE TASK_ENTRYS;

WHERE ql,qz,qs,q,sq,nq,qi,sqi,nqi ARE TASK_QUEUES;

WHERE DummyTask IS A CONSTANT TASK ENTRY;

/*1*/ First_Task(EmtyTstn) = DummyTask;
/*2*/ Discard Task(EmtyTstn) = EmtyTstn;

J*3*/ Size(EmtyTstn) = 0;

/*4*/ Capacity(EmtyTstn) = n;
/*5*%/ Equal (EmtyTstn;,EmtyTstnz) = Equal(n;,n,);
/*6*/ Equal(q,,q;) = Equal(q;,q,);

12
HIGHER ORDER SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

DATA TYPE: TASK_QUEUE(n); (continued)

/*7*/ Enter Task(sqi,se) =. WHEREBY q OTHERWISE KREJECT(nqi,ne,nq);

PARTITION OF (sqi,se,sq) IS

(ai,e,q) | Size(sqi) < Capacity(sqi),

(nqi,ne,nq) | Size(sqi) > Capacity(sqi);

/*8*/ q # EmtyTstn;
/*9%/ Size(q) = 1 + Size(qi);

/*10*/ Equal(q,Enter_Iask(ql,el))

/*11*/ First Task(q) = le OTHERWISE First_Iask(zqi);

/*12*%/ Discard Task(q) = 1qi OTHERWISE Enter_Task(Discard_jask(zqi),ze };

PARTITION OF (qi,q,e) IS

'(qi,q,e) | Preceeds?(Delta T(e),Delta T(First Task(qi))),

2(qi,q,e) 1 -Preceeds?(Delta_T(e),Delta T(First_Task(qi)));

/*13*/ Capacity(q) = Capacity(qi);

END TASK QUEUE(n };

= Equal(qi,ql) & Equal(e,el);

13

DATA TYPE: TASK QUEUE(n);

(continued)

Primitive Operation Descriptions:

qy = Enter Task(q;.€)

q, = Discard Task(q; J;

e = First_Task(q);

Size(q };

=
[]

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

Enters a TASK ENTRY into a TASK_QUEUE
according to its Delta T. An entry is
queued behind all others of lower
Delta T and all others of the same
Delta T that were filed before it.

It is queued before all entries of

'higher Delta T and all entries of the

same Delta T that are filed after it.
Implictly, once a task is entered into
the queue, its Delta T becomes the
time-difference between its execution time
and the execution time of the task
preceeding it in the queue. Thus, if
two tasks in the queue have the same
execution time, the Delta T of the
second would be equal to Notime. In
this way, when a task becomes first

in the TASK QUEUE, its Delta_ T
represents the time delay between the

current time and the task execution time.

Eliminates the first entry in the

TASK QUEUE. Will never reject (see Axiom 2).

The first entry in the TASK_QUEUE. There
is always a first entry because DumnyTask
is always returned as the first task of
an EmtyTskQ (see Axiom 1).

The current size of the TASK QUEUE
(i.e., number of entries present).
A DummyTask is not included in
this count (see Axioms 3 § 9).

14

T,
e’ 2 o

[P O T PE S Spavisiorien

DATA TYPE: TASK QUEUE; (continued) : g

=
1]

Capacity(q }; The maximum allowable size of the TASK_QUEUE. !

o
[

= Equal(q;-4,); Test to determine if two TASK QUEUES

are identical.

Axiom Descriptions:

T

Axiom 1: Assures that DummyTask is always present in an EmtyTskQ.

Axiom 2: Assures that DummyTask will be present as the first

entry in an EmtyTskQ even after an entry is discarded.

Axiom 3: In conjunction with Axiom 9, states that Size is a

count of the entries in the queue that are not DummyTask

Axiom 4: The capacity of a TASK QUEUE is determined by the
subscript of the EmtyTstn that it was built from.

Axiom 5: Two EmtyTstn's are identical if their capacities

are equal (as indicated by their subscripts).
Axiom 6: States that the test for equality is reflexive.

Axiom 7: States that Enter Task will reject if the queue
is already filled to capacity. 1In this statement, ailso,

is defined a symbol for the case in which the queue is not

previously filled to capacity.

! Axiom 8: Indicates that an EmtyTskQ is never the same as a
TASK QUEUE in which an entry has been made.
0
15
[]

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900 E
L .

; ERRRRSTNIRGRr v S ~ M- L L . ! N .) o - e o l

WORE

L R

DATA TYPE: TASK_QUEUE(n); (continued)

Axiom 9: States that an entry made into a queue that is not

filled to capacity will increase its size by one. Note]

that if DummyTask is entered via the Enter_Task operationm,
it will be treated as any other task and will increase

the size of the queue.

Axiom 10: States that the TASK_QUEUES resulting from entries made
into two non-filled queues will be identical if the

original queues were identical and the two task entries

are identical.]

POy o)

Axioms

I

11 § 12: Assure that the process of entering a task into the

queue will:

- e -
E "

a bk

1. place the new task at the front of the
queue if it has the smallest Delta_ T, or

2. place the new task in its proper order
so that repetitive applications of
Discard Task and First Task will find the
new task in front of all tasks with
greater Delta T.

Axiom 13: The capacity of the queue is invariant over the 4

Enter_Task operation.

16

- ——— g

L]

HIGHER ORDER SOFTWARE, INC, - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

- . ,) .
X . e , . ot o A
PorR ; . 3

DATA TYPE: TASK_ENTRY;

PRIMITIVE OPERATIONS:

address = Task_Addr(fask_pntry)
time = Delta_T(task_entry);
“z task entry, = Asgn Task(task_entry,,address,time };
T} boolean = Equal(task_pntryl,task_pntryz)
AXIOMS:

WHERE EmtyTask IS A CONSTANT TASK ENTRY;
- []

]

WHERE e,€y,¢, ARE TASK_ENTRYS; g
I

WHERE a IS AN ADDRESS;

WHERE t IS A TIME;

/*1*/ Task_Addr (EmtyTask) = REJECT:

J*2%/ Delta T(EmtyTask) = REJECT;

/*3*/ Task_Addr(Asgn_Task(e,a,t)) = a;

[*a*/ Delta_T(Asgn_Task(e,a,t) } = t;
/*5%/ Equal (ey,) = Equal(Task_Addr(el),Task_Addr(ez))

& Equal(Delta_T(el),Delta_I(ez)); I

END TASK ENTRY; L;
1

17
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

"

-

DATA TYPE: TASK ENTRY; (continued)

Primitive Operation Descriptions:

a = Task_Addr(e); ADDRESS attribute of a TASK _ENTRY.
t = Delta T(e); TIME attribute of a TASK_ENTRY. 5
e, = Asgn Task(el,a,t) } Assigns the ADDRESS and TIME attributes

to a TASK ENTRY.]
b = Equal(e,,e,); Tests to determine if two TASK_ENTRYs

are identical.

Axiom Descriptions:

Axiom 1: An EmtyTask has no ADDRESS attribute to examine.

Axiom 2: An EmtyTask has no TIME attribute to examine. ‘
‘ i
Axiom 3: The ADDRESS attribute that is assigned to a . 1?
TASK_ENTRY becomes the value that may be examined. Yw
: 1
"‘Axiom 4: The TIME attribute that is assigned to a ‘

TASK_ENTRY becomes the value that may be examined.

Axiom 5: Two TASK ENTRYs are identical if their assigned

attributes are identical.

Y oo

Eidras i sk ok

A fASK_ﬁNTRY consists of the task address and delay time for an
entry into a TASK QUEUE. The task specified by the address will
be executed after a delay specified by the time when an entry is
made into the queue. EmtyTask is the empty value of a TASK_ENTRY.

S A et A

18
HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-890"

- - e . . . o 2 R~ e Sl

in this section.

2.2 Waitlist System Operations

The specifications of all the Waitlist System operations are contained
A description of the function of the operations is

given below. The specifications follow.

Waitlist Operation Descriptions:

Preceeds?:

Reverse:

Regress:

New_Task Entry:

Update Waittime:

Pop_First Task:

; Counter_Interrupt:

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

- - ——————— L

- - - o

Test to determine if one time occurs

before another.

Produces a value that is the time

reverse of the input.

Decrements one time value from another.

Generates a TASK ENTRY from the

specified attributes.

Replaces the Delta T of the first
TASK_ENTRY in the TASK QUEUE by
the new time delay value that

is specified.

Removes the first TASK ENTRY from
the TASK QUEUE and outputs both the

entry and the new queue.

Decrements the time delay of the
first TASK_ENTRY in the TASK_QUEUE
by the specified amount. If the
first task must not then be delaved
any longef, a flag is set to
indicate this.

19

,,,,,,

Vi s e aa RN a1

ki ¥

— T
vt dmmie A,

Waitlist Operation Descriptions (continued):

T3rupt: Extracts the first task from tﬁe
TASK_QUEUE for execution. Sets a
flag (ruptagn) to indicate if the
next task is also to be executed
immediately. In the AGC, T3RUPT
is the program interrupt to service
the Waitlist System when the TIME3

counter overflows.

Taskover: If the flag ruptagn is True,
then T3rupt is reinvoked to process
the task interrupt. Otherwise,
no change is made to the TASK _QUEUE
and the task-identifying output-
address is EmtyAddr because no new

task is to be executed.

Longcall: Because in the AGC the value of the
Delta T of a TASK_ENTRY has a maximum
limit, one task at a time can be
delayed longer than this limit using
the Longcall operation. The constant
time, CycléTime, has a value that is
this maximum delay. The time input
to Longcall is the total defay before
the task is to be executed. Longcall
uses Longcycle to recycle the delay
until the delay interval is within
the maximum limit. Taskcall is then
invoked to enter the actual task

invocation request.

20
HIGHER ORDER SOFTWARE, INC. » 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

Waitlist Operation Descriptions (continued):

Longcycle: Decrements the time delay by the

amount of CycleTime and enters
Longcall as a task to be executed
after the delay CycleTime.
LongcallAddr is a constant ADDRESS
with a value which identifies

Longcall as a task.

Taskcall: Makes the final Waitlist entry for
* the delayed task of Longcall, to
be executed after the delay time when

it is less then the CycleTime period.

TR e —

o nadiida fRais

prm————————

21
8

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . {617) 661.8900

3 . e ——— —— s
3 e et .

- iy 3 it i e ., i gy
. ™ - . ? oW PRzl 3,19 » rabdi el ol L A

OPERATION: b = Preceeds?(t,,t,);

WHERE b’bl’bZ’bS ARE BOOLEANS;

WHERE tst, ARE TIMES;

b = And(bl,bz) JOIN (bl,bz) = Fl(tl,tz);

WEVN

by

Notafter(tl,tz) COINCLUDE b, = F(tl,tz);

b JOIN b

Not (b = Equal(tl,tz);

2 3) 3

END Preceeds?;

DERIVED OPERATION: time2 = Reverse(timel);

WHERE t IS A TIME;
Advance (Reverse(t),t) = Notime;

END Reverse;

OPERATION: t, = Regress(tl,tz);

3

WHERE t),t t t4 ARE TIMES;

2’73

t3 = Advance(tl,;4) COJOIN t4 = Reverse(tz);

END Regress;

22

HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

-

OPERATION: e = New_Task_Entry(a,t);

WHERE e IS A TASK_ENTRY;

WHERE a IS AN ADDRESS;
WHERE t IS A TIME;
WHEREBY e = Asgn Task (EmtyTask,a,t);

END New_Task_Entry;

OPERATION: q, = Update_Waittime(qi,t); 4

WHERE t IS A TIME;

WHERE q;,q_,q; ARE TASK_QUEUES;

WHERE €;,e ARE TASK_ENTRYS;

2
WHERE a IS AN ADDRESS;

q, = Enter_jask(ql,ez) JOIN (ql,ez) =AF1(qi,t);
q = Discard_Task(qi) COINCLUDE e, = Sz(qi,t);

e, = New_Task Entry(a,t) COJOIN a = FS(qi);

2

as= Task_Addr(el) JOIN e = First_fask(qi);

END Update Waittime; '

OPERATION: (qo,e) = Pop_First_Task(qi);

WHERE q.,q ARE TASK_QUEUES; i

WHERE e IS A TASK_ENTRY; ']

 § 9 = Discard_Task(qi) COINCLUDE e = First_Task(qi);

BRI R o ORI s +
S Ay R

END Pop_First_Task;

%
s

-
]
8
i HIGHER ORDER SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

-

i

|

OPERATION: (qo,overflow?) = Counter_lnterupt(qi,tinc);

WHERE qi,q° ARE TASK QUEUES;
WHERE overflow? IS A BOOLEAN:
WHERE e IS A TASK ENTRY;

WHERE tinc, t.,t

2 ARE TIMES;

1’

72} = = i .
(qo,overflow.) l"1 (qi,tz) COJOIN t Fz (qi,tlnc) ;

2

q, = Update_ﬂaittime(qi,tz) COINCLUDE WHEREBY overflow? = Not
ty = Regress(tl,tinc)

COJOIN tl = Delta_T(e)

COJOIN e =

First;Task(qi);

END Counter_Interupt;

24

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE

« CAMBRIDGE, MASSAC

after(tz,Notime);

HUSETTS 02139 .

(617) 661-8900

¥ 2 - M

-

OPERATION: (qo,ago,ruptagn) = T3rupt(qi);
WHERE q_,q,,q ARE TASK_QUEUES;
WHERE ego,enew ARE TASK_ENTRYS;
WHERE ago IS AN ADDRESS;
WHERE ruptagn IS A BOOLEAN:

WHERE past,delt,t ARE TIMES;

(a,,ago,ruptagn) = F,(q,ego,t) JOIN (q,ego,t) = F_(q);
° 155772 2’ 2 2

q, = Update Waittime(q,t)
2

COINCLUDE ago = Task_Addr(ego)
2

COINCLUDE WHEREBY ruptagn = Notafter(t,Notime);

(q,ego,t) = F3(q,ego) JOIN (q,ego) = Pop_first_?ask(qi);
2 2

WHEREBY (q,ego) = (q,ego) COINCLUDE t = F4(q,ego);
2 2

t = Regress(delt,past) JOIN (delt,past) = Fs(q,ego);
delt = F (q) INCLUDE past = Delta_T(ego);

delt = Delta_T(enew) JOIN enew = First Task(q);

END T3rupt;

25

HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

-

r e -

ETeryp

OPERATION: [qo,a,ruptagqb) =‘Taskover(qi,ruptagni);

WHERE q.,q_ ARE TASK_QUEUES;
WHERE a IS AN ADDRESS;
WHERE EmtyAddr IS A CONSTANT ADDRESS;

L ' WHERE ruptagn.,ruptagn ARE BOOLEANS;

1 1.1 - 1
(Cqq, 2, ruptagno) = T3rupt(qi)

COEITHER WHEREBY (Zqo,za,zruptagno) =(?qi,EmtyAddr,zruptagni);

PARTITION OF (qo,a,ruPtagno,qi,ruptagnl) 1s

1
(qo,a,ruptagno,qi,ruptagni)[ruptagni,

2 .
(qo,a,ruptagno,qi,ruptagni)|Not(ruptagni),

END Taskover;

OPERATION: (qg,3q,ty) = Longcall(qi,ai,ti);
WHERE q;,q, ARE TASK QUEUES;
WHERE a;,a, ARE ADDRESSES;
WHERE toety ARE TIMES;
WHERE CycleTime IS A CONSTANT TIME;

11, 1., = ¢ lect, 1. 1 2 22 . _ 2.2, 2,
(9,5 355 to) ongcycie(93> 35> tl) COEITHER (qys 8,» to] Taskcall(Q.35 i);

PARTITION OF (q _,a ,t

0’ o o’qi'ai’ti) IS

1 ° . . .
(qo,ao,to, qi,ai,ti)|Preceeds.(Notlme,Regress(ti,CycleTlme)),

2(q »a_,t

0’2t ,qi,ai,ti)lNotafter(Notxme,Regress(ti,CycleTlme));

END Longcall;

. 26
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 .+ (617) 661-8900

-
C e ok

e

- . = g8

oy WS b

"o

OPERATION: (qo,ao,to) = Longcycle(qi,ai,ti);

%

WHERE q; 4, ARE TASK_QUEUES;

WHERE e IS A TASK_ENTRY;

WHERE tooty ARE TIMES;

WHERE CycleTime IS A CONSTANT TIME;

WHERE a,a ARE ADDRESSES;

WHERE LongcallAddr IS A CONSTANT ADDRESS;

Fl(qi) COINCLUDE WHEREBY t, = Regress(ti,Cycletime)

COINCLUDE WHEREBY a = ay;

Ente:;Task(qi,e)

COJOIN WHEREBY e = New_Task Entry{LongcallAddr,CycleTime);

END Longcycle;

OPERATION: (q ,a_,t) = Taskcall(qi,ai,ti);

0" 0" O
WHERE q.,q ARE TASK_QUEUES;

WHERE e IS A TASK_ENTRY;
WHERE a;,a ARE ADDRESSES;

WHERE ti’to ARE TIMES;

Fl(qi,ai,ti) COINCLUDE WHEREBY (ao,to) = (ai,ti);

Enter_Task(qi,e) COJOIN e = New_Task_Entry(ai,ti);

END Taskcall;

27

o RRTPPET Y ” . _ R . e

-

HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

oy T——r—

T T W A e i

> ey

' 3.0 EXECUTIVE SYSTEM SPECIFICATION

i The data types 'and service operations of the Executive System are over-
B viewed below. The specifications themselves are contained in Sections 3.1

-?] and 3.2 respectively.

Executive System Data Types:

e JOB QUEUE: List of job invocation requests
which are ordered according to 1

their priorities.

e JOB ENTRY: Information required to establish]
a job invocation request in the %
JOB QUEUE. Includes proper

identification of the job itself. 3

e PRIORITY: Indicates a relative position

or importance in an ordering.

e TUPLE: A set of values which are ordered

on the natural members.

e STACK: A "last in first out" list of values.

Executive System Service Operations:

e Findvac: Invoked to establish a job invocation request
for a job that requires a VAC area (Vector
Accumulator Temporay Storage Area) to be
executed as soon as its priority is the highest
in the JOB_QUEUE. (Corresponds tc AGC Program
entries: FINDVAC, and SPVAC, where SPVAC is a

different implementation for shorter address

references.)

FRECEDING PAGE BLANK-NOT FILMED

o e

-
Py S ——

29

Fl
*

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHLUSETTS 02139 - (617) 661-8900

Uy~ R n 2 &

Executive System Service Operations (continued):

e Novac: Invoked to establish a job request for a job

without a VAC area. 1

e Change Job: Invoked to restore the state of a currently
executing job (at its same priority level)
in the JOB QUEUE, indicates which job in the

queue is presently of highest priority.

(Corresponds to AGC program entries: CHANGI §
and CHANG2Z). é
$
e Jobsleep: Invoked to 'put a job to sleep'" which is

to remove from consideration for execution
a job already established in the queue.

Does not remove the job from the queue, "just

B2

puts it to sleep" for a while, until it gets
""awoken' again. (Corresponds to AGC program

entry: JOBSLEEP.)

e Jobwake, Returns a "sleeping' job back into consideration,
for execution. (Corresponds to the AGC program
entry: JOBWAKE .)

e Priochng: Invoked to alter the priority of a job in the
queue, with the consequence of a possible
change in its relative position. (Corresponds]
to the AGC program entry: PRIOCHNG.) |

e Endofjob: Invoked to remove a job from the executive
svstem and release any storage allocated to it.

(Corresponds to the AGC program entry: ENDOFJOB.)

30
- = W OF TWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

3.1 Executive System Data Types

The data type specifications of the Executive System follow in this
section. With each specification are included explinations of the

function of the primitive operations and of the data-type axioms.

31
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8300

R S . e T
- R P 2o W3 208 ST L DR v o~ i .
L, e . . 4 : k¢ : .

\
9% S = e

DATA TYPE: JOB QUEUE(n);

PRIMITIVE OPERATIONS:

(job_queue,,address) Enter_Job(job_gueuel,job_pntry,priority);

(job_entry,priority,address) Top_Job(job_queue);

job__queue2 Discard _Job(job_gueuel,address);

(job_entry,priority) = Examine Job(job_queue,address); .
naturgl = Size (job_queue); i
natural = Capacity(job_queue);
boolean = Equal(J'ob__queuel,job__queue2);

AXIOMS:
WHERE n,n ,n, ARE NATURALS;
WHERE EmtyJobQ IS A CONSTANT JOB_QUEUE(n);

WHERE - DummyJob IS A CONSTANT JOB_ENTRY;

WHERE DummyPrio IS A CONSTANT PRIORITY;
WHERE DummyAddr IS A CONSTANT ADDRESS; L
WHERE ql,qz,qs,q,sq,nq,qi,sqi,nqi ARE JOB_QUEUES;

WHERE e,,e,se,ne ARE JOB_ENTRYS;

1’
WHERE p,.,p,Sp,np ARE PRIORITYS;

WHERE adr,a,,a,sa,na ARE ADDRESSES; ' : §
/*1*/ Top_Job(EmtyJonn) = (DummyJob,DummyPrio,DummyAddr);
.) 1
J*2*/ Discard_Job(EmtyJonn,adr) = KEmtyJonn(adr)
\ ’ 2 .
OTHERWISE KREJECT(adr);
. , 1 , 1
/*3*/ Examine_Job(EmtyJonn,adr) = (kDummyJob(adr)’kDummyPrio(adr));
i 2 .
OTHERWISE KREJECT(adr);
32

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 .

Lo el e b

(617) 661-8%(.

>

DATA TYPE: JOB QUEUE(n); (continued)

PARTITION OF adr IS

ladr | adr

= DummyAddr,

2,4r | adr # DummyAddr;

J*ax
/*5%/
/*6%/
/%74

/*8*/

Size(EmtyJonn } = 0;

Capacity(E.mtyJonn) = n;

Equal(EmtyJonnl,EmtyJonnz) = Equal(nl,nz);
Equal(q,,q;) = Equal(q;,q,);

Enter Job(sqi,se,sp) = WHEREBY (q,3)

OTHERWISE KREJECT(nql,ne,np,nq,na);

PARTITION OF (sqi,se,sp,sq,sa) IS

(qi, e, p, q, a) | Size(sqi) < Capacity(sqi),

(nqi,ne,np,nq,na) | Size(sqi) > Capacity(sqi);

/*9*/

/*10*/

/*11*/

/*12*/

/*13*/

/*14%/

HIGHER ORDER SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

A —————- =

-

~

n

Discard Job(q,a) = qi;

Examine Job(q,a)

(e,p);

q # EmtyJobQ;

Size(q) = 1 + Size(qi);
Capacity(q) = Capacity(qi);

Equal(Enter_Joh(q,,e;,p;),(q,3)) =

Equal(q,,qi) & Equal(e,,e) & Equal(p;,p);

33

S e e Tt

PR

i 2 g

-

DPS o G 5, Raie

DATA TYPE: JOB QUEUE(n); (continued)

/*15*/ a # DummyAddr;
/*16*/ IDENTIFYg(Enter_Job(q,el,pl)) # a;

1 1.1 2 .
/*17*/ Top Job(q) = ("e, p, a) OTHERWISE Top_Job(qi);

PARTITION OF (qi,e,p,q,a) IS

!(qi.e,p,q,a) | Higher?(p,IDENTIFY;(Top_Job(qi))),

?(ai,e,p,q,) | -Higher?(p,IDENTIFY;(Top_Job(ai)));

END JOB QUEUE(n);

34
_ HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-89((

DATA TYPE: JOB QUEUE(n); (continued)

| Primitive Operation Descriptions:

(qz,a) = Enter_gob(ql,e,p); Makes an entry into the JOB QUEUE. The
JOB_ENTRY is ordered in the queue accord-
be ing to the specified PRIORITY. An ADDRESS

is returned as an identifier not of the

job's location in the queue, but for 2

random refference to the job while it is

1 §8 in the queue.

(e,p,a) = Top_Job(q); Identifies which job in the queue is
currently of highest priority.

—-—

%= Dlscard_gob(ql,a); Removes from the queue, the JOB_ENTRY

identified by the given address. Will

L S A DRI -

reject if no job is associated with

JRRE

the specified address.
(e,p) = Examine_Job(q,a); Identifies from the queue, the job and ﬁ
its priority that is associated with 3

the specified address.

Size(q); A count of the net number of entries

=]
]

that have been made to the queue.

=
"

Capacity(q); Indicates the maximum total number of
entries that may be contained within

the queue at ome time.

o
f

= Equal(ql,qz); Determines if two queues are identical.

Ve g

~

[35
HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

P geth i g

-~ - T T I VR 0 .7 SOt (RPN . e gt T
A o L) . " PR T P 3 Xt) P wtds,

caat,

= ooy v

sy

DATA TYPE: JOB_QUEUE(n); (continued)

Axiom Descriptions:

Axiom 1: Assures that DummyJob with its associated priority and j
identifier is always present in an EmtyJobQ.

Axiom 2: Discarding DummyJob using its identifier, DummyAddr,

TS

does not change the EmtyJobQ. However, any other
address will reject because there can be no job

associated with it.

T L

Axiom 3: Only a DummyJob identified by DummyAddr exists in an
EmtyJobQ to be examined.

Axiom 4: No jobs have been entered into a EmtyJobQ.

Axiom 5: The capacity of a JOB QUEUE is determined by the
subscript of the EmtyJobQ, that is was built from.

Axiom 6: Two EmtyJonn's are identical if their capacities
are equal (as indicated by their subscribts).

Axiom 7: States that the test for gquality is reflexive.
£ |
Axiom 8: States that Enter Job will reject if the queue is E
already filled to capacity. A symbol is also defined
in this statement for the case in which the queue
is not previously filled to capacity. H

Axiom 9: A job that is entered into the queue may be randomly

removed by the Discard Job operation. ;

Axiom 10: The addres$ that is returned when a job is entered %
may be used to identify that job from within the queue. ;

36
ASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 .

-~ L o " RS P, v Lo

HIGHER ORDER SOFTWARE, INC. - 843 M

(617) 661-8900
. g i L oy 2 i AL e -

- r{

DATA TYPE: JOB QUEUE(n }; (continued)

. : Axiom 11: An EmtyJobQ is never the same as a
JOB_QUEUE in which an entry has been made.

Axiom 12: An entry made into a queue that is not filled -to

capacity will increase its size by one. Note that

if DummyJob is entered via the Enter Job operation,

it will be treated as any other job and will increase 2

the size of the queue.

Axiom 13: The capacity of a queue remains constant when
' jobs are entered (and when deleted as indicated
by Axiom 9).

Ty

Axiom 14: The JOB_QUEUEs resulting from entries made into

two non-filled queues will be identical if the

2O gt

original queues are identical and the two jobs

are identical.

Axiom 15: The value of DummyAddr (which is associated with L
DummyJob) is never equal to the identifier of ' |
a job that has been entered into the queue. 4
This is true even if the particular job that
was entered was DummyJob. In this case, the axiom
states that a different value than DummyAddr

3 . would be returned.
Axiom 16: Each different entry into the queue has a unique
identifier.
‘ .
Axiom 17: The process of entering a job into the queue will either

place the new job at the front of the queue if it has the

highest priority or place it in proper order so that

e ey

’ repetitive applications of Discard Job and Top_Job will
find the new job in front of all jobs with lower priorities.
P ' { B
. » 37
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8300 ;

L ——— 2 e
[3

s =) - A

E DERIVED OPERATION: job__queue2 = Replace_Job(job_gueuel,job_pntry,address);

WHERE q,sq,nq,qi,sqi,nqi ARE JOB_QUEUES;

WHERE e,,e,,e,se,ne ARE JOB ENTRYS;

1272
WHERE p,sp,np ARE PRIORITYS;

WHERE a,,a,,a,sa,na ARE ADDRESSES;
Replace Job(Er{ltyJonn,el,a1)} = REJECT;

: 2
5
Enter_Job(sqi,se,sp) = WHEREBY (q,a) OTHERWISE KREJECT(nqi,ne,np,nq,na);

PARTITION OF (sqi,se,sp,sq,sa) IS

(qi, e, p, q, a) | Size(sqi) < Capacity(sqi),

(nqi,ne,np,nq,na) | Size(sqi) > Capacity(sqi);

Examine_Job(Replace_gob(q,el,a),a) = (el,p);

Equal (Replace_Job(q,el,alj,Replace_gob(q,ez,az)) = Equal(ei,ez) & Equal(al,az);
Size(Replace_Job(q,e;,a)) = Size(q):

Capacity(Replace Job(q,e,,3)) = Capacity(q);

END Replace_Job;

The effect of the Replace_Job operation is that the resulting JOB_QUEUE
has had replaced the JOB ENTRY associated with the specified ADDRESS
by the new JOB_ENTRY that is specified. No other changes occur. If
no JOB_ENTRY has been associated with the specified ADDRESS, the

U
pu

operation will reject.

38
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . 1617) 661-8900

-

- -) i) . n i oo pm e Y0 TR o s BT O R

. e e e s e r——————A T - 7 - ol e T

IV SRR Pt v+ -

DATA TYPE: JOB_ENTRY;

PRIMITIVE OPERATIONS:

tuple = Job_Reg Set(jobentry);

address = Lbc§Bankset(jobentry);

address = Vac_Addr(jobentry);

boolean = Asleep?(jobentry);

jobentry2 = Assgn_gob_ﬁntry(jobentryl,tuple,addressl,address,,boolean)

boolean = Equal(jobentryl,jobentryz);

AXIOMS:

WHERE e,e),e, ARE JOBENTRYS;

- WHERE EmtyJob IS A CONSTANT JOB_ENTRY;

WHERE reg IS A TUPLE;

WHERE loc,adr ARE ADDRESSES:

WHERE zzz IS A BOOLEAN;

/*1*/ Job_Reg Set(Assgn Job Entry(e,reg,loc,adr,zzz}) = reg; g
‘ |
[*2*/ Loc§Bankset (Assgn Job Entry(e,reg,loc,adr,zzz}) = loc; r
/*3*/ Vac_Addr(Assgn Job Entry(e,reg,loc,adr,zzz)) = adr;
'. ' ‘
/*4*/ Asleep?(Assgn Job Entry(e,reg,loc,adr,zzz)) = zzz; L
1 - 1
/*5*/ Equalkel,ez) = Equal(Job_Reg_Set(el),Job_Reg_Set(ez)) ‘
L § Equal(Loc&Bandset(el),Loc&Bandset(ez)) ?
§ Equal{ Vac_Addr(e,),Vac_Addr(e,)) K
& Equal(Asleep?(el),Asleep?(e,)); ¢
s ?
l,.
[] 39

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

- ot

v o T T temnal

DATA TYPE: JOB_ENTRY; (continued):

/*6*/ Job_Reg Set(EmtyJob.) = REJECT;
E /*7*/ Loc§Bandset (EmtyJob) = REJECT;

/*8*/ Vac_Addr(EmtyJob) = REJECT;

/*9*/ Asleep?(EmtyJob) = REJECT;

END JOB_ENTRY;

Primitive Operation Descriptions:

t = Job_Reg_Set(j)

a = Loc&Bankset(j)

a = VAC_Addr(j)

In the AGC, a job register set is a group of
data cells set aside for each established
job for use as temporary storage and status

information. This is specified as a TUPLE.

In the AGC the cells LOC and BANKSET determine
a unique address for a job starting location.
This amounts to a unique identifier or name

for a job, and is specified as an ADDRESS.

An AGC VAC (Vector ACcumulator) area is a
stack-like storage area. Vac_Addr indicates

the starting address of the VAC area.

40

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

S

T T ey WY B E IRLT X oy st I g

DATA TYPE: JOB ENTRY; (continued)

b = Asleep?(j) An AGC job that has been "put to sleep” will

not be considered for execution regardless of

e b abah s

its priority until it is "awakened.' It
does, however, retain its status as an ;
established job. This is specified as a
boolean-value attribute of a JOBENTRY.

j2 = Assgn _Job_Entry
(jl,t,al,az,b) (Assign attributes to a Job_Entry.) The
JOBENTRY, jl’ is given the attributes
. tl,al,az,b to produce iy :
?
Axiom Descfiptions: g
Axioms 1-4: The attributes assigned to an JOB_ENTRY are |
those that will be produced when it is examined. 5
Axiom 5: Two JOB_ENTRYs are equal when all their ﬂ
‘ attributes are equal. Uy
L s
Axioms 6-9: An Empty Job Entry has no attributes. 5
5
]
A JOBENTRY is an information-storage device. It differs .
from a data structure in that as a data type it entails i
no internal structure. In implementation an internal ‘
L structure is necessary. This, however, is not of concern
at this layer of abstraction. A JOBENTRY corresponds to
0 an established job in the AGC. i
. ® 41 y
1

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . {617) 661-8900

AR s e
- . . A '3
- LRSI AT I O M o

¢
i
1

DATA TYPE: PRIORITY;
PRIMITIVE OPERATIONS:
boolean = Higher?(priorityl,priorityz);
boolean = Equal(priorityl;priorityz);
AXIOMS:
WHERE p,p;,P, ARE PRIORITYS; E
/*1%/ Equal(p,p) = True;
/*2*/ Equal(p,,p,) = Equal(p,,P;);
/*3*/ Entails(Equal(pl,pz)&Equal(pz,ps),Equal(pl,ps)) = True;
/*4*/ Higher?(p,p) = False;
/*5*/ Entails(Higher?(pl,pz)&Higher?(pz,ps),Higher(plps)) = True;
/*6*/ Entails(Higher?(pl,pz)&Higher?(pz,pl),Equal(pl,pz)) = True;
/*7*/ Higher?(pl,pz)!Higher?(pz,pl) = True;
END PRIORITY;
Primitive Operation Descriptions:
Higher? A boolean function indicating whether or not the
first input PRIORITY is of greatest importance (i.e.,
"higher priority") than the second. ;
!‘,
Equal Boolean function indicating the equality of two ‘
PRIORITYs. L
Axiom Descriptions: ;ﬁ
s : |
Axioms 1-3 Characterizes the equal OPERATION as an eguivilance
relgtion.
Axionms 4-7 Characterizes PRIORITYs as a totally ordered set.
42

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

-

DATA TYPE: TUPLE;

PRIMITIVE OPERATIONS:

tuple2 = Asgn_Item(tuplel,anytype,natural)

anytype Examine Item(tuple,natural };

FO

boolean

Empty?(tuple);

boolean = Equal(tuplel,tuple2)

b e

AXIOMS:

WHERE t,tl,t ARE TUPLES;

2

WHERE a,al,a

2 ARE OF SOME TYPE; WHERE ANYTYPE IS SOME TYPE;

WHERE n,n ,n ARE NATURALS ; |

2°M327y
WHERE EmtyTuple IS A CONSTANT TUPLE;

\

/*1*/ Empty?(EmtyTuple } = True;

/*2%/ Empty?(Asgn Item(t,a,n)) = False;

/*3*/ Examine Item(Asgn__Item(t,a,ns),n4) = 1a

OTHERWISE Examine_Item(zt,2n4);

PARTITION OF (t,a,ng,n,) IS _ ,
(t,a,ns,n4) l n3 - n4:

2 .
] {t,a,n;,n,) | ng £ n,;

/*4*/ Equalﬂ Asgn_}tem(tl,al,nl),Asgn_}tem(tz,az,nz)) =

Equal(tl,tz) & Equal(al,az) & Equal(nl,nz); |

J*5*/ Equal (EmtyTuple,EmtyTuple) = True;
/*6*/ Equal(Asgn_Item(t,a,n),EmtyTuple) = False;
[*7*/ Examine Item(EmtyTuple,n) = REJECT;

> END TUPLE; ' 43

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02134 . .

L2 acaas ik

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . {617) 661-8900

DATA TYPE: TUPLE; (continued)

Primitive Operation Descriptions:

t

o
1]

o
i

Emptv?(t)

= Equal(t

= Assgn_}tem(tl,a,n) Enter the value of a into t; at the ordering-

position indicated by n to produce t,.

Examine Item(t,n) Give a the value that was entered in t at

ordering-position n.
Has t been assigned any values?

Is t, identical to t,?

10t2) 1 2

Axiom Descriptions:

Axiom 1:

Axiom 2:

Axiom 3:

Axiom 4:

Axiom 5:

Axiom 6:

Axiom 7:

The value of EmtyTuple is a TUPLE for which no

entries have been made.

Any TUPLE which has been assigned an entry

is never equal to EmtyTuple.

The value examined at an ordering-position will

be the value that has been assigned there.
The results of assignments to two TUPLEs are
identical if the original TUPLEs are identical,

the assigned values are equal, and the assigned

positions are equal.

Two instances of EmtyTuple are equal.

EmtyTuple can never equal a TUPLE which has had assignments.

No values 'have been entered into EmtyTuple and hence,

none can be examined.

44

Lakl

DATA TYPE: STACK;

PRIMITIVE OPERATIONS:

T

stack2 Push(stackl,anytype);

stack2 Pop(stack1)3

anytype = Top(stack);

boolean = Equal(stackl,stack2)

AXIOMS:
WHERE EmtyStack IS A CONSTANT STACK;
WHERE ANYTYPE IS SOME TYPE;

WHERE t IS OF SOME TYPE;

Y =2

WHERE s,5,,5, ARE STACKS;

’h.
/*1*/ Top(EmtyStack) = REJECT; 2
fa*
/*2*/ Top(Push(s,t)) = t; }ﬁ
/*3*/ Pop{ EmtyStack) = REJECT; :
' [*4*/ Pop(Push(s,t)) = s; 'A
_/*s*/ Equal(s;,s,) = Equal(Top(s,),Top(s,)) & Equal(Pop(s;),Pop(s,));
3 J%6*/ Equal (EmtyStack,Push(s,t)) = False; 3
/*7*/- Equal(EmtyStack,EmtyStack) = True;
:
) END STACK; .
| p
o
]
» 45
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8300

- .
)

-

DAT: TYPE: STACK; (continued)
.Prin ‘e Operation Descriptions:
Sy * zn(sl,t); Enters an item onto the stack.
Sy~ (sy); Removes the top item from the stack.
t = 5); Examines the top item on the stack.
b = 1(51,52); Test to determine if two stacks are identical.
Axic scriptions:
Axi. No items exists in EmtyStack to examine.
Axi The Push operation enters the specified item
at the top of the stack.
Axi. No items exists in EmtyStack to remove.
Ax: Removing the last placed item returns the original value.
Axi -7 Provide a deductive basis for evaluating the equality

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . {617) 661-890C

of two stacks. Two stacks are identical if all the items

they contain are identical and in identical order.

EmtyStack is never equal to a stack with an item entered,

and two instances of EmtyStack are equal.

46

(has Tt

s s ey

g

ey e -y
it i aiatan

DN i o

e

3.2 Executive-System Operations

given below.

in this section.

The specifications of all the Executive System operations are contained
A description of the function of the operations is

The specifications follow.

Executive Operation Descriptions:

Findvac:
B

Novac:

Novac2:

New_Job Entry:

Change_Job:
by
Jobsleep:
’
'
I 3

1

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139

Establishes a job in the JOB QUEUE and allocates

a VAC Area to the job. Will reject if no VAC Areas
are available or if the JOB_QUEUE is filled to
capacity. INVOKES: Novac2;

Establishes a job without allocating a VAC Area.
Will reject if the JOB QUEUE is full.
INVOKES: Novac2;

Enters a new job into the JOB QUEUE. Will reject
if the queue is full. INVOKED BY: Findvac,Novac;
INVOKES: New_Job_Entry;

Creates a new JOB_ENTRY from the specified attributes
by assigning them to an EmtyJob. INVOKED BY: Novac2;

Replaces a specified JOB_ENTRY at the location given
(in the relative position given by the priority it
was entered with) and produces the location and
JOB_ENTRY that has the highest priority.

Puts to sleep the JOB ENTRY at the specified location
in the JOB QUEUE and it assigns its Loc&Bankset
according to the address specified.

INVOKES: Go_Tb_Sleep,Asgq_Loc&Bankset;

47

Eaiy

- (617) 661-8300

Executive Operation Descriptions (continued):

Go_To_Sleep: Puts a JOB_ENTRY into the state of 'being asleep."
INVOKES: Set_Sleep_State; INVOKED BY: Jobsleep;

Jobwake: Awakens the JOB_ENTRY at the specified location
in the JOB_QUEUE. INVOKES: Wake Up;

Wake Up: Puts a JOB_ENTRY into the state of "being awake."
INVOKES: Set_Sleep_State; INVOKED BY: Jobwake;

Set_Sleep_State: Sets the sleep state of a JOB_ENTRY according to

the boolean value specified.
INVOKED BY: Go_To_Sleep,Wake Up;

Asgn Loc&Bankset: Assigns the specified address to the Loc§Bankset
of the JOB_ENTRY. INVOKED BY: Jobsleep;

Priochng: Removes the JOB_ENTRY at the specified location in
the JOB QUEUE and reenters it with a new priority.

Endofjob: Removes a JOB_ENTRY from the JOB_QUEUE and
releases its VAC Area (if one was assigned) P

for further use. !

New_Job_Yet?: Determines if there is a JOB_ENTRY in the JOB_QUEUE
with a higher priority than the one at the specified
location. L

48
HIGHER ORDER SOFTWARE, INC, - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

OPERATION:

WHERE qi’qo ARE JOB_QUEUES;
WHERE $515, ARE STACKS;
WHERE newloc,locctr,vacaddr ARE ADDRESSES;

WHERE newprio IS A PRIORITY;

(o]

(qo,so,locctr) = Findvac(qi,si,newprio,newloc);

s = Pop(si) COINCLUDE (qq,locctr) = Fl(qi,si,newprio,newloc);

(qo,locctr) = Novacz(qi,newloc,vacaddr,newprio) COJOIN vacaddr

END Findvac;

* OPERATION:

WHERE q;,4, ARE JOB_QUEUES;
WHERE newloc¢,locctr,vacaddr ARE ADDRESSES;
WHERE newprio IS A PRIORITY;

WHERE NoVacAddr IS A CONSTANT ADDRESS;

(qo,locctr) = Novac(qi,newprio,newloc);

WHEREBY (q ,locctr) = Novac2(q.,newloc,NovacAddr,newprio};
9, q; P

END Novac;

49

HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

OPERATICN: (qd,locctr) = Novac2(qi,newloc,vacaddr,newprio);

WHERE q;,9, ARE JOB_QUEUES;
WHERE e IS A JOB_ENTRY;
WHERE newloc,vacaddr ARE ADDRESSES;

k ' WHERE newprio IS A PRIORITY;

(qo,locctr) = Eﬁter_gob(qi,e,newprio) 3

COJOIN WHEREBY e = New_gob_ﬁntry(EmtyTuple,newloc,vacaddr,False); J

END Novac2;

OPERATION: e = New_;ob_ﬁntry(v,al,az,b)

WHERE e IS A JOB_ENTRY;
WHERE v IS A TUPLE;

WHERE a;,a, ARE ADDRESSES
WHERE b IS A BOOLEAN;

WHEREBY e = Asgn_gob_ﬁntry(EmtyJob,v,al,az,b);

END New_Job_Entry; 1

50
HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8300

ww

OPERATION: (qo,eo,loco,fixloc) = Change_gob(qi,ei,loci);

WHERE q.,q ARE JOB_QUEUES;

L _ . WHERE ei,eo,e1

WHERE loci,loco,locl,fixloc ARE ADDRESSES;

ARE JOB_ENTRIES;

WHERE ovfind IS A BOOLEAN;

WHERE qtop IS (JOB_ENTRY,PRIORITY,ADDRESS);
(qo,eo,loco,fixloc) = Fz(ql) JOIN q; = Replace_gob(qi,ei,loci);

= NCLUDE i = :
WHEREBY 9, = COINCLUD (eo,loco,flxloc) F3(ql)’

1

(eo,loco,flxloc) = F4(e1,

- : 3
locl) JOIN (el,locl) = IDEhTIFYl,S (qtop)

JOIN qtop = Top_Job(q;);

WHEREBY (eo,loco) = (el,locl) COINCLUDE fixloc = VanAddr(el);

END Change_job;

OPERATION: q, = Jobsleep(qi,locctr,newloc);

WHERE q;-9, ARE JOB_QUEUES;

WHERE e ezz ARE JOB_ENTRYS;

1°%2
WHERE locctr,newloc ARE ADDRESSES;

WHERE ep IS (JOB_ENTRY,PRIORITY);

q, = Replace_}ob(qi,ezz,loc) COJOIN ezz = Go_jo_Sleep(eZ)

COJOIN e, = Asgn_pocGBankset(el,newloc)
COJOIN ¢, = IDENTIFYi(ep)
. COJOIN ep = Examine_Job(qi,locctr);

END Jobsleep;

51
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

OPERATION: e = Go_To_Sleep(e;);

WHERE e .e ARE JOB_ENTRYS;
WHEREBY e, = Set_§1eep_§tate(ei,True);

END Go_To_Sleep;

OPERATION: q, = Jobwake(qizzloc);

WHERE q.,q_ ARE JOB_QUEUES; !

WHERE ezz,eup ARE JOB_ENTRYS; i

WHERE zzloc IS AN ADDRESS;

WHERE ep IS (JOB_FMTRY,PRIORITY);

q = Replace_Job(qi,eup,zzloc)

CCJOIN eup

Wake_Up(ezz)

COJOIN ezz IDENTIFYi(ep)

COJOIN ep

Examine_gob(qi,zzloc);

END JobWake;

OPERATION: e, Wake_Up(ei);

WHERE €8, ARE JOB_ENTRYS;
WHEREBY e = Set_§leep_§tate(ei,False);

END Wake Up;

:
b 52
| HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

i ST

OPERATION: e, = Set_ﬁleep_ﬁtate(ei,asleep?)

WHERE €;s€, ARE JOB_ENTRYS;
WHERE v IS A TUPLE;
WHERE loc,va ARE ADDREESES;

WHERE asleep? IS A BOOLEAN;

e = Asgn_gob_ﬁntry(ei,v,loc,va,asleep?)
COJOIN v = Job_Beg_§et(ei)
COJOIN loc = Loc&Bankset(ei)

COJOIN va = Vac_Addr(e;);

END Set_Sleep_State;

OPERATION: e, = Asgn_Loc&Bankset(ei,loc);

LA

.,,,..,"‘“

G Ay

WHERE e:,€, ARE JOB_ENTRYS;
WHERE reg IS A TUPLE;
WHERE loc,va ARE ADDRESSES;

WHERE zz IS A BOOLEAN;

e = Asgn_Job_ﬁntry(ei,reg,loc,va,zz)

COJOIN reg = Job_Reg_Set(ei)

COJOIN va = Vac_Addr(ei)
COJOIN zz = Asleep?(ei);
i .
| A ,
END Asgn Loc&Bankset; . L{

53

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . {(617) 661-8000

OPERATION: (qo,loc) = Priochng(qi,locctr,newprio);
WHERE q;.q ,q; ARE JOB_QUEUES;
WHERE e IS A JOB_ENTRY; WHERE locctr IS AN ADDRESS; | 1
WHERE newprio IS A PRIORITY; ‘

WHERE ep IS (JOB_ENTRY,PRIORITY);

(qo,loc) = Enter_Job(ql,e,newprio) COJOIN (ql,e) = Fl(qi,locctr);
q; = Discard_gob(qi,locctr) COINCLUDE e = Fz(qi,locctr);
e = IDENTIFYf(ep) JOIN ep = Examine_gob(qi,locctr);

END Priochng;

54
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-890)

R ry g e

OPERATION: (qo,vso) = Endofjob(qi,vsi,loc);

WHERE qi,qo ARE JOB_QUEUES;
WHERE vsi,vso ARE STACKS;

WHERE e IS A JOB_ENTRY;

WHERE loc,va ARE ADDRESSES;

WHERE ep IS (JOB_ENTRY,PRIORITY);

WHERE NovacAddr IS A CONSTANT ADDRESS;
q, = Dlscard_gob(qi,loc) COINCIUDE vso = Fl(qi,vsi,loc);
.vso = FZ(VSi,e) COJOIN e = Fs(qi,loc);
e = IDENTIFYi(ep) JOIN ep = Examine_Job(qi,loc); i]

WHEREBY lvs = lvs. COEITHER 2vs_ = F_ (°vs.,2e):
0 i 0 4 1

PARTITION OF (vs_,vs,,e) IS
1(vso,VSi,e)IVac_Addr(e) = NovacAddr,

2(vso,VSi,e)IVac___Addr(e) # NovacAddr;

vsé = Push(zvsi,va) COJOIN va = VacﬂAddr(ze);

END Endofjob;

’ 55
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . {617) 661-8900

OPERATION: njy = New_Job Yet?(q,loc);

WHERE q IS A JOB_QUEUE;
WHERE toploc,loc ARE ADDRESSES;
WHERE qtop IS (JOB_ENTRY,PRIORITY,ADDRESS);

WHERE njy IS A BOOLEAN;

njy = Equal(loc,toploc) COJOIN toploc = Fl(q); -l‘

toploc = IDENTIFYg(qtop) JOIN qtop = Tob_Job(q);

END New_Job_Yet?;

T ey, T

56

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900 f

- v . v B o
v ; NPT T it e L et s % p - 3

Section V

A HIGHER ORDER MACHINE (HOM)
FOR
HIGHER ORDER SOFTWARE (HOS)

by
W. Heath

|
|
|
|

TABLE OF CONTENTS

1.0 INTRODUCTION ..i¢iuvcvecooenncnnaoanossonns S |
2.0 MULTIPROCESSING SYSTEM REQUIREMENTS..... c et ssscesasasenans 2
2.1 Reliability......cco.n. e eteteeetet e ter et es et eseaas 2
2.2 Cost Effectiveness et et cesas 3
2.3 "Function-First" Design Approach........cec... e . 3
2.4 Developmental Reconfigurability............ crereaeann 4
2.5 Summary of Processing System Requirements............. 5
3.0 EXTANT MULTIPROCESSING MACHINE DESIGNS:.::c:veeveonenns ceaae 1 W
3.1 Special-Applications Machines........ccceeeen.. ceenas 7 ‘
3.1.1 The Array Machine............. s ceeeenea 7 b
3.1.2 Associative Processors...... et it eeseena ceeann 7 %
3.1.3 Pipelined Machinescc0eeu.. ceeen 8 ‘
3.1.4 Summary of Special-Purpose Wachlnes cesses 8 55
3.2 General-Purpose Multiprocessing Systemns........ ceeenoa 8 i
3.2.1 The MultiproCesSSOr...ic.civeireeceonsooocansnnnas 9 E
3.2.2 The Computation-Net Machine.........cvccven. eeall "
3.2.3 The Data-Flow Machine B ees.a13 p
3.2.4 Single-Assignment Programming Concept1l0 ?%
3.3 Summary of Extant Multiprocessing Concepts..... S 3
4.0 SPECIFICATION OF CONCURRENT PROCESSES ...ccv.. creccncansaa.20
4.1 Implementation Concepts for Multiprocessing Software..Z21l p
4.1.1 Instruction Readinesscecene ces e ceeeesan2l ?
4.1.2 Data Entity Conceptcco0vevveens ceseaseeesdl2
4.1.3 Software Module Scope......ccevenees K |
. 4
4.2 Instruction Readiness, Memory Allocation, and Module
Scope COncClusSionS..veveeeseenoas e et ceeann ceesas25
5.0 CONCLUSION..:eceveeseos ceecarstetesse o Cecsese e ceae.26
t
’
§ HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE « CAMBRIDGE, MASSACHUSETTS 02139 . {617) 651-8900

e L

————s k N "

HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

"

1.0 INTRODUCTION

The availability of low-cost digital hardware has now motivated
the use of automatic processing in applications that have much
gréater complexity than those previously feasible. Because of

the degree of processing power that is required for these new
applications, it is becoming impossible for existing single-pro-
cessor architectures to meet the time constraints that are im-
posed. Singlerrocessor systems simply do not operate fast enough
to perform all of the required time-critical tasks. Other than
increasing actual logic-operation speeds, these time constraints
can be met by organizing the hardware so that more than one opera-
tion can be performed at a time. Many such "multiprocessing”
architectures ‘have been proposed, but by far the greatest diffi-
culty encountered with each design is the software control of the

many independent operations which occur simultaneously.

The theory of Higher Order Software (HOS) [HAM76a,b,c] provides
a solution to the problem of specifying concurrent, asynchronous
processes. HOS defines the interactions of data, rather than
operations on hardware, as do moét common software~definition
techniques. As a result, an HOS specification provides the in-
formation necessary to execute software with a maximum degree of
simultaneous operation. Using HOS it is possible to maintain
complete asynchronous control of the processing hardware while
minimizing storage use through dynamic memory allocation.

This report presents the Higher Order Machine concept as an im-
plementation of systems that are specified according to the HOS
methodology. The Higher Order Machine (HOM) is a fully distribu-
ted, modular, asynchronous multiprocessing system. It is totally
reconfigurable and has the potential capability of performing any

rumber of operations simultaneously.

1

— v e———r——

et
L is

2.0 MULTIPROCESSING SYSTEM REQUIREMENTS

In Chapter 1, multiprocessing was discussed as a solution to the
demand for greater system throughput. Much more is required of

a multiprocessing system to fulfill the needs of the continually
expanding applications for automatic processing. This chapter ad-

dresses some of the more important constraints that confront opera-
tional multiprocessing systems. Included in the discussion are

the need for greater reliability in "on-line" applications, the
ever-present ecochomic demand for cost-effectiveness, the de~em-
phasis of hardware structure in a "function~first" approach to
system design, a recognition of the need to "predict the unpre- ﬁ
dictable" and provide for a reconfiguration capability during %

L]
system development, and an ending summary of the impact of these !
f
requirements on multiprocessing system structure. ¥
- r
2.1 Reliability 4]

As automatic processing costs have decreased, more and more of
the operation-critical functions of applications systems have been {
made dependent upon the reliable performance of computational 1
equipment. Electronic component failure rates have been progres-
sively decreasing as the technology has improved, but these reli- Q
abilities are not sufficient for the safety- and life-critical '
functions of many real-time applications. 1In these critical
applications, it is necessary to provide fault-tolerant cap-
abilities in the processing system to achieve acceptable reli-
ability. This is readily incorporated into multiprocessing sys-
tems because alternate system configurations can be made avail- L
able in the event of a hardware component failure. Thus, "fail- i
soft" capabilities, whére syscem performance may be degraded by .
failures but not interrupted completely, can be built into the
system without the high cost of "back-up" redundancy. If the
execution-time advantages of multiprocessing are to benefit these
highly safety-sensitive applications, then the necessary reliability
muét be provided within the system at reasonable costs.

2

e e jo——

HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

2.2 Cost Effectiveness (

A multiprocessing system would not be economically viable unless

it provided a cost reduction over an equally powerful aggregate]

of simplex computers. .This cost saving must come from an increase
in hardware utilization during system operation. For example,
increasing parallel-processing power without intensifying memory
usage will provide no resultant cost improvement because process- ;
ing costs are proportionally increased. A savings would then be
derived only when more use of the same storage space can be made
by multiprocessing, therefore reducing the cost of memory use.

It is also possible to improve the usage of active processing
hardware as well. 1In a simplex system, a large percentage of J

the active hardware is always idle because the system is generally

capable of performing only one of the operations available to it

at any instant. However, a multiprocessing system can be given

S —

the capability of using single-function hardware units indepen-

2y

dently of each other. Distributing the processing logic in this

manner will improve the active hardware utilization in the system.

The cost-effectiveness of a multiprocessing system can be further ﬂ
improved by relaxing the speed requirements of individual logic
operations. Overall throughput improvements can still be obtained
even if each operation is not as fast as would be necessary in a .
simplex system. Thus expensive high-speed logic is not required
for good system performance. What the multiprocessing concept 3
promises then in economic terms is a means to achieve the perfor-
mance required with less hardware and cheaper components.

2.3 "Function-First" Design Approach

Historically, the design and maintenance of computer hardware re- &
presented the greatest cost of an automatic processing system. i:

As a result, hardware operation dictated the structure of the
system. Software developed as the method by which a fixed machine
was made to perform in a desired manner. However, with current

T | 3
t HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHLSETTS 02139 . (617) 661-890C
| o | g

s Wde R st B hacacatt Chatd

-

hardware cost reductions and the increased complexity of present-
day applications, software specification has begun to consume a

major portion of the system cost for both design and maintenance.
It used to be true that orientation of the system development to
the physical machine, rather than to the function it was perform-

ing, caused an overriding importance to be placed on the speed

efficiency of the code produced for it. But it is becoming more
and more apparent that the-overall efficiency and reliability of
the system is more dependent on a unified system structure than

on the cleverness of scattered sequences of programming code.

It is now necessary that a system be analyzed according to the
function it performs. Once the function of the system has been
determined and completely specified, it is then possible to choose
the best configuration of hardware and software to implement that
“function. This can range anywhere between the extremes of a com-
plete software solution on existing "fixed" hardware and a total
hardware solution in which the whole function is hardwired. From
this general perspective, there is no categorical difference be-
tween a simplex system and a multiprocessing system. Instead,

a uniprocessor is a special case of the many possible types and
configurations of processing units, communication busses, and
storage units. Thus, with this complete set of hardware configura-
tions to draw from, the best hardware/software solution can be
chosen to perform the desired system function as specified.

2.4 Developmental Reconfigurability

It is generally impossible to complete a system design and have

it perform as required the first time. Even the requirements

often cannot be completely specified beforehand. Usually too
much. has to be learned about the function of a system during its
design for this to be accomplished. As a result, changes to a
system can always be expected throughout its development and indeed
throughout its life cycle as its requirements evolve and its use
matures. For these reasons, an effective processing system must

be easily reconfigqured to adapt to inevitable modifications.

4
HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

Reconfigqurability is also necessary in a multiprocessing system
to facilitate molding the physical hardware to the functional re

quirements of the applications system. This was discussed in the

o

previous section as the "function-first” approach to systems de-
sign. The multiprocessing system architecture would not then be
one machine, but a class of machines from which the.best was chosen
for the particular application. Economic considerations dictate
that the chosgn hardware configuration be assembled without costly

individual redesign. A multiprocessing architecture composed of
discrete modules with well-defined interfaces will fulfill
these requirements. For reconfiguration, modules could then be

added or removed according to the resource-allocation analysis
of the function the system must perform. With this type of flexi-
ble architecture, only the least amount of hardware necessary need .
be incorporated into the system. Thus the size, weight, and cost
of the hardware can be minimized with the least design effort.

2.5 Summary of Processing System Reguirements

This chapter has outlined some new requirements for.computing
machinery in the face of a redirection in the emphasis of system
development from operational hardware to system function. These
requirements may be summarized as follows:

a. Low-cost reliability and fault tolerance should be avail-
able to a multiprocessing architecture design through dy-
namic reconfiguration capabilities.

b. The greatest intensity of use produces the greatest re-
turn for investment in hardware. This can best be accom-~
plished by a distributed system in which the large majority ;
of the hardware components can be simultaneously active. L

c. The application function, not the hardware operations,
should dictate the structure of the system.

d. Thg hardware should be tailored to the functional re-
s quirements of the system through a modular reconfigura-
tion capability.

s 5
HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

These considerations must be incorporated into the design of pro-
f cessing systems if the trend for applications to become more and
2 . more real-time oriented and safety critical is to continue, and
if these systems are to become economically realizable. The chap-
ters following examine how fully these requirements are fulfilled
by existing multiprocessing system designs and how these require-
ments are implemented within the Higher Order Machine system.

6

HIGHER ORDER SOFTWARE, INC. » 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

3.0 EXTANT MULTIPROCESSING MACHINE DESIGNS

This chapter examines current multiprocessing concepts.in the face
of the requirements outlined in Chapter 2. The basic classes of
multiprocessing machines that are discussed are the special-appli-
cations machines and the general-purpose multiprocegsing systems.

-,

3.1 Special-Applications Machines

The three speciald-purpose parallel machines that are described--
the array processor, the associative processor, and the pipeline
processor--are not intended as all-purpose computational systems.
Instead, each is designed to perform efficiently a particular
function which could be executed by a general-purpose machine
but would take less time using the special hardware.

3.1.1 The Array Machine

The array machine consists of a bank of processors, all

of which respond simultaneously to one sequence of instructions.
The most elaborate operational machine is the ILLIAC IV which has
a set of 64 processing elements [THU75]. These machines are very
effective in dealing with such data types as n-tﬁples, vectors,
and arrays,which have intrinsic parallelism in their operation
sets.

3.1.2 Associative Processors

Like the array machine, the associative processor has a bank of
processing elements which are controlled by a single instruction
sequence, but greater power is built into each of its processing
elements. The associative~processor elements are content addres-
sable. This means that they have the capability of responding
individually to an instruction depending on the content of their
registers. This characteristic makes the machine very useful

for data-base operations, such as searching for particular con-
texts or sorting data by its content. Banks of these content-

7

HIGHER ORDER SOFTWARE, INC. - 833 MASSACHUSETTS AVENUE « CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

addressable elements, which are constructed with comparison logic y
only, are called content-addressable memory or associative memory.]
In using content-addressable memory, the actual physical location .
of data can be neglected and only the structure of the data need
be of concern.

3.1.3 Pipelined Machines

Pipelining is a processing concept in which computation is parti-

tioned into sequential stages. Data from one stage is passed on

|
i
to the next for further processing. With such an organization, [;
i : !
concurrent operation can occur because execution may proceed !

simultaneously with different data at each stage. As a result
of its structure, effective use of pipelining is limited to spe- 3

cialized processing of serial data streams.

3.1.4 Summary of Special-Purpose Machines rid

Although the special-purpose hardware organizations have restricted
applications, they do well what they are intended to do. Indeed,
random-access memory is special~purpose hardware which can only
store and retrieve data. Similarly, these hardware modules should
be thought of as possible additions to a multiprocessing system
that has a larger intended scope.

3.2 General-Purpose Multiprocessing Systems

There are two types of concurrent computation in general-purpose
multiprocessing: (1) simultaneous execution of multiple tasks]
and (2) parallel execution of operations within a single task.

This division will aid the evaluation of the capabilities of the

systems designed to perform multiprocessing. In what follows,

four hardware configurations are discussed:

l. the Multiprocessor,
2. the Computation Net Machine,
3. the Data-Flow Machine, and

4. the Single-Assignment Machine.
8

i HIGHER ORDER SOFTWARE, INC. . 843 MASSACH''SETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

¢ 2Xa

(&

3.2.1 The Multiprocessor

Basic Multiprocessor

The multiprocessor is the most commonly discussed multiprocessing
configuration and, in fact, is the only one of those examined in
this section that is operational. This configuration is a multi-
CPU assembly that is bootstrapped from the common simplex system.
The basic multiprocessor system has a set of independent processing
units which share a common memory space. Conceptually, each pro-
cessor within the machine can perform independent operations for
‘ the same or for different tasks. However, because the processors
A share the same memory address space, they must contend for access
to the same physical memory hardware. This creates a problem
that can severely cripple the performance of the whole system.

Because a storage module can service only one memory access at

a time, it is desirable to interleave the memory address space

of the system among several storage modules. But if more than

one processor tries to access the same storage module, all but one
must wait to be serviced. Depending on the numerical ratio of
storage modules to processors, this will cause some percentage

of the execution time to be lost to memory contention. Within

i a certain effective limit, this loss can be reduced by increasing
the number of storage modules with respect to the number of pro- .3
cessors (for a constant storage space). However, this is not a |
free improvement and will proportionally increase the total sys-

tem costs attributed to passive storage resources and thus reduce

the cost-effectiveness of the whole system. "

Enhanced Multiprocessor L

Elaborations of the basic multiprocessor configuration have been
developed to reduce the processing time lost to memory contentions.
Usually this has consisted of some combination of storage dupli-
cation and individual cache memory space. Storage duplication

is simply the process o0f keeping identical copies of the most

used portions of memory in different storage modules to increase
their accessability, whereas a cache is a small amount of private
memory assigned to each processor. By using individual cache

] 9
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 66" 8900 U

ey } — e l

W RLTTPWALT

memory, it is possible to reduce the total number of accesses to
main memory. This is done by maintaining a working copy of a sec-
tion of main memory in each cache or by storing duplications of
low-level routines or macro-expansions within each processor(SMI73].
While both cache memory and storage-duplication techniques will
serve to decrease memory contention, their use will also degrade
the cost-effectiveness of the system. There are two contributing
factors. First, the isolation of some of the memory space in
caches and the replication of portions of the memory contents

will reduce the 4ntensity of memory usage. Secondly, the software
overhead incurred by the initiation of a parallel path will be
greatly expanded, and as a result, the degree of fine-grain con-
currency must be limited to levels for which parallelism is profit-
able despite the overhead. Both of these side effects are contrary

to the concepts which motivated the development of multiprocessing

systems, i.e., to provide a cost savings over an egually powerful

network of autonomous computers.

Multiprocessor Analysis
The multiprocessor is a logical adaptation of conventional computer

architectures to multiprocessing capabilities. It has the advan-
tages of modularity, in terms of processing units, memory units,
and busses, and of possible fault-tolerant dynamic reconfiguration
capability with internal triad redundancy. However, it has severe
limitations in meeting the requirements outlined in Chapter 2.
Parallelism in the multiprocessor is mostly limited to simultan-
eous execution of different tasks because of the expense needed

to initiate new parallel paths, the memory access conflicts, and the

difficulty of manually programming the dynamic interaction of the
processing units. A certain amount of pipelining is possible with-
in an individual processor, but this is limited by storage-address
dependencies and instruction dependencies. The multiprocessor
primarily exhibits centralized control and suffers generally from
low-usage intensity because each processor must execute instruc-
tions sequentially. This coarsely organized modularity also af-
fects the costs of dynamic reconfiguration because, in the event

10

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . {617) 661-

8900

L e

e A i

a4 .

FTPOFTY NN

that a processing unit exhibits a hardware fault, the use of the

complete processor must be discontinued.

The most critical deficiency of the multiprocessor from a "func-
tion-first" systems viewpoint is its fixed architectural struc-
ture. The possibility of optimizing the hardware to the applica-
tion function without costly redesign is thus eliminated. This
can be alleviated somewhat: by "microprogrammable™ and "nanopro-
grammable" architectures which allow redefinition of different
levels of hardware control, but such a system still derives its
structures from a predetermined, fixed hardware. An organization
of this nature is contrary to the concept of allowing the function
to determine the extent and form of the hardware. The architec-
ture of the'multiprocessor reflects its bootstrapped development
from a fixed single-processor computer and exhibits the similar
necessity of limiting software definition to the "machine domain" i

.

- r—— e e e e

instead of the "function domain."

3.2.2 The Computation-Net Machine

Net~Machine Structure :
The core of the computation-net machine [SYL75] is a hardware
array of arithmetic microprocessors (AMPs), each of which can take
up two input operands and an operator and output one operand as
the result of the indicated operation. The net machine has dif-
ferent storage units for instructions and operand values--the in-

struction memory (IM) and the operand memory (OM) respectively.

The AMPs can traffic among themselves and with the IM and OM via

a set of operational registers. A sequence and control unit (SCU) '

directs operations and traffic within the system. The SCU inter-
! prets instructions from the IM, fetches and stores operands in

the OM, and organizes the operations performed by the AMPs, all

via a queue and bus system.

’ Arithmetic Computation Nets
Operation of the net machine is based on the concept of arithmetic
computation nets. A net is the decomposition of an arithmetic
) 11
i . .
; HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 .« (617) 661-8900

- 'l

X

expression into an input/output mapping of primitive operations
which can be performed by an AMP. A net composition of the ex-
pression, e = (a+b)«(c-d), for example, is illustrated in Fig-

ﬁre 3.2.2-1.

e = a b + c d - *
AMP #1 AMP #2 ’
b
'3
,41 :
“
. AMP #3 i
1
/3
Figure 3.2.2-1 ‘
Arithmetic Computation Net for e = (a+b)*(c-qd)

In a compilation process from a language used to define sequen-

tial arithmetic computation, a control code and instructions are
- generated for each net and stored in the IM. The control code]

is used to organize and link the AMP operands and to synchronize

operand traffic.

Net-Machine Operation
Each net executes within the array of AMPs. Net execution is com- L

pletely synchronous and is specified during compilation. Concur-

rent computation can take place for independent operations such J
as AMP #1 and AMP #2 in the example. AMP #3 could not execute
until both AMP #1 and AMP #2 had produced their output, but if
the net were larger, there could possibly be other operations
executing concurrently with AMP #3. The size of the nets, and

12

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

therefore the concurrent capability of the computation-net ma-
chine is limited by the number of AMPs in the array because an
AMP can be assigned only one operation in each single net execu-
tion. The net size is alsolimited by program-contrcol logic since
the language is strictly sequential and all transfers must sepa-
rate nets. Address dependencies must also separate nets because
all operand fetches must be made before net execution is initia-
ted. When an address is-computed dynamically, its operand fetch

must be made in the beginning of the next net cycle. Through
simulation ([SY#75], it was found that ten AMPs in the array
were. typically the most that the logical programming restric-

tions or net size would allow.

Net-Machine Analysis

The arithmetic computation-net multiprocessing system is strict- ﬂ
ly a single-task machine that can have a concurrency of up to E
approximately ten simultaneous operations. However, there is ;
no reason that more than one net processor could not share the ﬁ
same memory space and therefore have the capability of executing ﬁ

multiple tasks simultaneously. Although such a configuration

would have the same structural'deficiencies as the multiproces-
sor, the internal parallelism of each processor would be increased
significantly. The extent of overhead for initiation of a paral-
lel process might also be reduced because each net could be treated

as a logical machine instruction.

3.2.3 The Data-Flow Machine 1

Data-Flow Language Concept

The Data~Flow Machine was designed to execute Data-Flow programs L
[RUM75]. Data-Flow programs are composed of procedures in the
conventional sense, but Data-Flow procedures are defined in a
particular manner and are designed to specify only deterministic
computations. The Data-Flow Language is based on the concept
that a datum is an autonomous entity, called a token, which is

created by some particular operation and useé¢ or consumed by

13

i »
- % HIGHER ORDER SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . {617) 661-8300

another. A Data-Flow procedure is specified as a directed grarh

I

!
in which the nodes are operations and the directed links are one- f
way channels over which tokens travel. An oﬁeration executes ‘
(or fires) when all its argument tokens have appeared at its
input links. It then "consumes" its input tokens and subsequent-
ly emits its result tokens at its output links. All operations
i in a Data-Flow procedure are asynchronous and depend only on the

presence of input. A procedure is initiated by the presence of

procedure argument tokens at its input and is completed when
all the result- tokens are produced at its output. One procedure
can invoke another by use of an application mechanism for which
the invoked procedure is considered an operation node at the

outer level. The set of Data-Flow operations include conven-
tional function operators as well as special mechanisms for flow
control such as switches, unions and duplication-branch nodes. {
A Data-Flow procedure is basically a flow diagram something akin
to a model~-train layout. In this analogy, data tokens would be

R

PR ¥

E,

engines which carry values, operation nodes are junctions which

can alter the token in some specified manner at a particular

point in the line, and a control node is either a switch which
operates from a signal token from another line, a duplication 4
branch which sends out another duplicate train along a second »
line, or a union junction which meshes two sets of lines into

one set. ‘ 5

Data~Flow Machine .
The hardware architecture of the Data-Flow Machine is organized

around a set of activation processors which implement the com- '3
putation of a Data-Flow procedure. An activation processor op- ;
erates on a procedure after it has been invoked until no more L
computation can be performed because of outstanding procedure

calls. At this time, the procedure is deactivated and the 3
activation processor takes up the computation of a newly acti- H
vated procedure. When results become available from invoked
procedures, the dormant procedure that had made the invocations
is reactivated and computation is continued. Actual computa-

14

HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 .« (617) 661-850U

Jﬂ&*

tion is performed in an activation processor by an execution pipe-
line. The execution pipeline consists of a parallel set of func-
tional units in series with modules which control the pipeline
operation. The functional units perform the primitive Data-Flow
operations. Several operations may be executed concurrently by
different stages of the pipeline, and, if loaded, the functional
units can operate simultaneously. Concurrency of operation in the
Data-Flow Machine is realized through simultaneous execution of
multiple activation processors and through the overlap of functional

processing within the execution pipeline of each individual acti-

vation processor.

Data-Flow Analysis ;
The Data~-Flow Language represents a significant step above con- ‘
ventional programming toward the specification of software as a J‘
function instead of as directed operations on a machine. Data-
independent operations, where the input to one does not depend

on the output of the other, are intrinsically identified in the
language. Thus parallelism is automatically detectable at any
level. Side-effects cannot exist also because all data paths

must be identified. However, the Data-Flow Language,as it is,

is not suited to system specification because it is very low-level
and difficult to use. This defficiency may possibly be overcome

by the development of a suitable high-level language (perhaps
similar to the Single-Assignment Programming Language discussed

in the next section). Of more serious consequence is the fact

that data links are not uniquely identified outside of the pro-
cedure in which they exist. This results in a less distributed
machine than might possibly be developed. 1In the Data-Flow Machine,
all operations must be executed within the "umbrella" of their

eI

areonk oA i

it P DR EP VAP

T

procedure activation, causing artifical limitations on the size
of procedures and unnecessary overhead in activating and deacti- i
vating procedures. The Data-Flow Language is also limited in the ‘j
s definition of its data types. The Data-Flow Procedures as des- |
cribed are more implementations of a calculation in terms of given

15
 §

1 HIGHER URDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 + (617) 661-8900

—

data types than the specification of a function. Implementing
a particular calculation instead of specifying a function to be

performed eliminates the selection of other possibly more effi- ?
cient implementations. The Data-Flow Language does not specify

a functional hierarchy but instead defines the lowest-level cal-
culations to be performed. Thus there exists no facility for
recovery from invalid inputs to a module and no inherent priority
structure to guarantee that all the internal procedures of one
module can interrupt all the internal procedures of another module
of lower priority. Finally, no provision is made in the Data-Flow

Language for the existence or passage of time or for the specifi-
cation of non-determinate functions such as I/O operations and |
external events. These are all necessary functions that must be |
considered in real-life systems.

'3.2.4 Single-Assignment Programming Concept

44
The concept of single-assignment programming was developed as a ;
possible solution to the problem of organizing a multiple sys- #
tem of independent processors to perform in concert without in- :

terference of operation. To achieve this, it was recognized that
each new value that is generated by a processor must have a ﬁnique
identification. Thus, a variable must be assignéd a value '
only a single time. Adherence to this constraint provides auto- {
matic detection of all possible parallelism in the execution of f
a‘specified computation. This is apparent because any two speci-
fied operations that are simultaneously ready for execution may
be executed in parallel. An instruction may be performed just as
soon as all the variables that it uses have been defined. Hence, L
there is no programmed "flow of controli:” the sequence of in-
struction execution is determined by flow of the generation and
subsequent use of data. The single-assignment programming lan-
guage, SAMPLE (for Single-Assignment Mathematical Programming lan-
guagE), and a simulated machine-concept to execute it were developed
by Chamberlin [CHA71].

16

HIGHER ORDER SOFTWARE, INC. - 843 MASSAC

AMBRIDGE, MASSACHUSETTS 02139 .
AR It _ o

(617

-

) 661-8900

Single-Assignment Programming Language

There are two data types in SAMPLE, real numbers and tuples, con-
sisting of ordered sets of numbers or other tuples. Standard ex-
pressions and assignments permit the specification of arithmetic

computation. There exists a conditional assignment statement with }
a boolean-valued predicate to allow programmed control of the
computational flow, and there are two types of iteration control for
either simultaneous or necessarily-sequential computation. Simul-
taneous iteration is used in replicated instructions on tuples, !
and sequential iteration is supported by a looping mechanism.
Programs in SAMPLE may have a block structure through which vari-
able-naming scope is controlled, but memory allocation will not

be affected because computation flow is independent of instruction
listing. ‘

Single-Assignment Machine Structure

The hardware system has three passive storage units-- aninstruc-
tion store, a data store, and a ready list. The instruction store .g
contains the program in primitive hardware operations. Each op- L

eration calculates one output operand; the status of each in-
put operand is maintained in the'instruction of a "ready" flag
which indicates the existence of its value. The data store con-
tains the user data. A data cell has provision for a value as
well as a pointer to the instruction which uses that value. If
more than one instruction uses the value, then they follow the first
in a linked 1list. If the variable is a tuple, then its value is itself
a pointer to a contiguous set of cells which hold the tuple values.
The ready list contains copies of all instructions that are ready |
to be executed because all their input operands have been defined.

. Active logic is contained in a set of independent processing L
units which execute in parallel operation.

System Operation ' ¥

Computation is performéd in instruction-execution cycles in which 1
each processor repeats the following sequence of actions ([SYL75]):

17

HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE « CAMBRIDGE, MASSACHUSETTS 02139 « (617) 661-8900 é

SN

et L o — 2 ot e

l. The processor fetches from the ready list an instruc-
tion which is ready to be executed.

2. The processor fetches from the data store the input
operands of the instruction and performs the indicated
operation on them.

3. The processor writes the resulting output operand into
the data store. 1In the same storage-access cycle, it
obtains the pointer to an instruction which is waiting
for the newly-ready cell, if any.

4. The processor follows the liinked list of instructions
which are waiting for the newly-ready data cell. For
each such instruction, it does the following:

! a. It turns on the ready bit of the newly-ready
1 operand.

b. If all ready bits are now on, it copies the in- ﬂ
struction into the ready list.

- c. It obtains the link to the next instruction on the
waiting iist.

5 e

Iteration and function invocations are handled by dynamically
generating new instructions during execution. In a tuple instruc-
tion copies of each instruction are replicated for each element
of the tuple. Function invocations are made by filling in the
input variable "names" in the proper locations in a template of

the function instructions. A new copy of all the instructions

of a loop body are generated with each execution of the loop to
preserve single assignment. A concept of "levels of readiness"
must be introduced in the execution of a loop, because all instruc-
tions in the currently executing copy of the loop must have been L
performed before their output variables may be referenced by ex-

| . ternal instructions.

| Single-Assignment Analysis

Single-assignment programming and Data-Flow layouts are very simi- !
lar in that they both express low-levc »Operations on data. This

is a significant departure from sequential programming which ex-

presses non-unique operations on hardware components. However,

18 |

HIGHER ORDER SOFTWARE, INC, - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

- ~ . s P . Lo e b
.

a hierarchical functional structure is still lacking. 1In the
single~assignment technigues, this results in the inability to de-
termine when the storage for data may be reallocated.” Without
a functional hierarchy, eaéh data reference cannot be identified,
and it is therefore impossible to determine when all references
have been made. As with the data-flow techniques, timing and
response to non-deterministic events are not provided for in the

single-assignment language-

o rihmia e b ot S

3.3 Summary of Extant Multiprocessing Concepts

In examining the current multiprocessing system concepts, the need
for an adequate means of expressing functional relationships be-
comes apparént. The Single-Assignment and Data-Flow techniques
are less machine oriented than the sequential prograrming of the
multiprocessor or the net machine. None of these software tech-
niques, however, is able to support the execution of a completely
distributed, asychnronous system. The next chapter will establish
the methodology of Higher Order Software as the solution to this

R T e

problem.

15
&

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

e AP . N . L Y WP AR R o .) - R R+ O PRI

-

4.0 SPECIFICATION OF CONCURRENT PROCESSES

Before the solution to a problem has been defined, it is impossible
to determine how this solution can best be implemented for actual

execution. This is the reason why the problem must be specified
in a manner that is totally independent of any particular imple-
mentation. Higher Order Software (HOS) makes possible just such a
problem description. HOS is a formal methodology for the specifi-
cation of reliable systems that include components of hardware,
firmware, software, and humanware and of the dynamic environ-

ment within which these systems reside. It is a formal theory
based on a set of axioms that define a functional hierarchy for
complete and consistent computable systems. The axioms formalize
the interfaces, functional influences, and internal control of the
system. The HOS theory is detailed in [HAM76a,b,c]; the language
for HOS system specification, AXES, is described in [HAM76c]. 1

Higher Order Software provides a solution to the problem of speci-
fying concurrent, asynchronous processes. An HOS specification
includes the information necessary to execute software with the
maximum degree of simultaneous operation. Using HOS, it is pos-
sible to maintain complete asynchronous control 6f the processing
hardware while minimizing storage use through dynamic memory alloca- 3
tion. -

As -discussed in Chapter 1, the primary goal of implementing a

multiprocessing system is to gain the time (and therefore cost) |
advantage of concurrent computation. This chapter investigates J
the reasons that HOS makes possible the maximum use of all active L
processing hardware in ‘an implementation and the minimization

of passive storage use in the system during execution. The first :,
section develops these concepts in comparison with other methods
of software definition, and the second examines their form and
implementation in the actual software of the Higher Order Machine.

20

¢
:
i
)
3

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661.8900 '

- ~ el R C, B S S . l
W 5 o DD P HPNY e Dbl L e ot aald X actdr’., PR

4.1 Implemehtation Concepts for Multiprocessing Software

During the execution of concurrent processes, it is essential :
to determine when an instruction may be executed. This is so
because it is desirable to execute all instructions as soon as
possible and thereby maximize the system throughput; Equally
important is the need to delay the allocation of storage space
to a particular datum until its value is generated and to re-
lease that storage for further service as soon as its value is
| no longer needed. Through this practice, the use of the avail-
[able space may be intensified to as great a degree as possible.
This will minimize the overall memory requirements for the sys- i
tem and maximize its cost-effectiveness. This section investigates "
the manner in which these goals may be attained in the implementation

of a multiprocessing system through proper specification of soft-

L

ware. The implementation concepts that are developed are the
determination of the execution readiness of an instruction, the
unique identification of each entity of data within the system,
and the scope limitations of data access for software modules.

- —— g ey —

4.1.1 Instruction Readiness

Functionally, any primitive hardware operation in a system is 1
ready to begin execution as soon as the values of all its input

operands have been defined and are available. This is the only

necessary criterion. In an HOS specification, this condition

is detectable dynamically because of adherence to the single- .
assignment property. This has been described for single-assign-

‘r‘j -

ment programming in Section 3.2.3. This information is much the
same as that provided by a data-flow layout in which each datum,
or token, is uniquely identified not by name, but by its loca-
tion on a particular link. In data-flow layouts, separate paths
are provided for each datum so that an operation cen identify

[} each input uniquely as it becomes available on the link. Single-

assignment programming techniques provide for unique identifica-

tion of each datum and fcr flacs at each instruction tc signal the
availability of each irput operand. (Of course, the use of some '

° 8
: 21 B

SAEMED OANCN cAFTHIANT (1irm fEA A, e At e e =

= - PRI M . e By g

'»

flag mechanism is actually the only way that a data-flow layout,
as well, could be implemented unless it were hardwired.)

This specification of instruction readiness does not exist in
sequential programming. Each datum is identified by its storage- ?
space address and the same memory location is used over and over
for different data, so, as-a result, the execution of each opera-
tion must be made in proper sequence under the assumption that
all its input operands afe properly defined. This condition
must be guaranteed in the program design, and thus creates,

to a large extent, the need for programming skill in the soft-
ware development as well as causing greater propensity for pro- ¥
gram anomalies.

4,1.2 Data Entity Concept

If the sidgle-assignment technique is to benefit a multiprocessing
system that must have cost-effective memory consumption, then

the concept of an autonomous, uniquely identified datum must

be introduced. It is necessary that the identity of each entity
of data be made independent of the manner in which its value

is stored. Only in this way can the same memory location be
reused for different data while retaining the explicit definition
of execution readiness for each operation. This storage independ-
ence is lacking in single~assignment programming and results

in economically unfeasible memory consumption.

Once the softwaré specification is made independent of the char-
acteristics of the machine, then more explicitness can be re-
quired of the specification, thus eliminating any implied condi-.
tions or restraints. An HOS specification includes this defini-
tional exactness. Specifically, to make possible the explicit
definition of operation readiness as well as reuse of storage
locations, it is necessary to require that a variable be refer-
enced only once as well as assigned only once. This single-

22

HIGHFR ORDFR SOFTWARE. INC. « 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MA‘SSACHUSETTS 02139 . (617) 661.80C-

hﬁhﬂp~ s cedini, .

reference property requires that a new primitive operation be de~ ;
fined which would perform this replication function. This opera-
tion, called a CLONE in AXES, would input a single datuin and out-

put a datum set, each member having a unique identity but also
having a value that is the same as that of the input. This func-
tion is analogous to the duplication branch in a daga-flow defini~-

tion (called a "wye" operation).

In implementation, it is not necessary that physical copies be
made of a datum that is referenced more than once. The single-

reference constraint and the replication function are required
for definitional explicitness, not for machine operation. It is
through this practice that it is possible to determine dynami-
callywhen all references have been made to a datum so that the
memory space it has been occupying can be reallocated. Since
all references are specified and each is uniquely identified, a
counting mechanism may be maintained which will indicate when a
value can be discarded. However, in a multiprocessing environ-
ment, it may prove more time-saving actually to create a new
physical copy for each reference. This would eliminate memory
contention which can consume an inordihate amount of prééésééi
time. For simple data types, this practice may not use much
more memory space because nearly as much space is required to
store an address reference to a value as to store the value
itself.

4,1.3 Software Module Scope

The single reference and single assignment of variables in the
specification of software have been discussed in the previous
sections as definitional constraints which permit dynamic
memory allocation and the detection of instruction readiness.
In HOS, these requirements result from axioms which govern

the scope limitations of data within a software module. An

HOS specification is a hierarchy of software mcdules which must
be constructed in a manner consistent with the specification

|
23

s
‘ HIGHER ORDER SOFTWARE, INC. « 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 « (617) 661-89500

———a—— s g - -

axioms. (The consequence of compliance with these axioms at the
design level of abstraction with respect to interface correct-
ness and data-type operations are developed in [HAM76a,b,c].)
With respect to data, an HOS module is a unified functional
mapping from the module input to the module output. The module
input and output are different data sets and are the only means
through which a module may have external communication. Side
effects due to data can therefore not exist in a software opera-
tion. (Side effects due to relative timing and undefined func-
tional mappings are prevented by restrictions resulting from
other axioms on the ordering of submodules and the rejection

of invalid inputs). The data scope constraints imposed by the
HOS axioms can be summarized as follows:

a. All data identified within a module are local to the
module except members of the module's input and output
sets.

b. A module may not assign values to any data external to
itself unless that data is part of its output set.

c. An invoked module has reference access only to external
data that is part of its input set.

d. A module may reference but not assign the values of 'its
input set. (This results in the single-assignment
constraint).

e. A controlling module is solely responsible for providing

the input set and receiving the output set of a module
which it invokes. Therefore, no other module has access

to the data within an invoked module except the controller

which makes the invocation, and this he~ access to
only the input and output sets.

These data-access constraints permit the single-reference require-

ment in an HOS specification, whereas the lack of scope limita-

tions in a single-assignment program conceals data concordance.
This makes it impossible during the execution of a single-assign-
ment program to determine when the references to a datum have all

been made.

24

HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 6618900

i'
}

RS

"

-

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

=y

4,2 Instruction Readiness, Memory Allocation, and Module

Scope Conclusions

The results of this discussion may be summarized by attributing
the ability to detect instruction readiness to the single assign-
ment of variables, the capability of performing dynamic memory
allocation to the single reference of variables, and the pre-
vention of data-induced si@e-effects to module-scope constraints.
An instruction may be executed when all its input operands have
been defined. Under single-assignment, this condition exists

as soon as all the input variables have been assigned values.

In conjunction with this, the single~reference property permits
the determination of the dynamic allocation cf memory to a
variable--memory is allocated when its value is assigned and is
released after its value has been referenced (or after all refer-
ences have been made if a counting mechanism is used instead

of separate copies for each reference). At the module level,
these two constraints cause a module to be functionally eguiva-
lent to an operation with deterministic behavior and no data
side-effects, i.e., the module references only its input and

it assigns its output through a deterministic functional mapping.
The implementation of these concepts within the Higher Order
Machine has been outlined.

25

-

5.C CONCLUSION

The Higher Order Machine concept has been presented as a solution
to the problem of utilizing the full computational power of cur-
rently available hardware. In comparison with a cross-section

of extant multiprocessing architectures, the Higher Order Machine !
(HOM) has been found to be uniquely capable of:

1. any degree of processing concurrency thereby maximizing
computational throughput,

2. total dynamic memory allocation which minimizes storage
consumption,

3. fully-distributed operation which provides maximum hard-
ware utilization (both passive and active) and insures P
greatest cost-effectiveness, i

- 4. a complete modularity in construction which permits the
hardware configuration to be determined by the applica-
tion requirements,

5. the reconfiguration of Primitive Hardware Operations which }
allows optimization of the hardware/software implementa-
tion trade-off,

NPT ORL YiPW

6. the simplicity and reliability that results from the]
elimination of the excess hardware required for control
of systems that are not structured by HOS.

These hardware capabilities become possible only through the for- P
malized specification of software according to the principles
of Higher Order Software (HOS). An HOS specification is an ab- ;
stract hierarchical decomposition depicting the functional char-

acteristics of a system, rather than a set of operations on fixed

hardware. It_therefore defines interactions of data at any level

of abstraction and permits the automatic identification of both
Primitive Hardware Operation readiness and dynamic memory alloca-
tion which together produce the unique capabilities of the HOM.
The modularity and distributed control inherent in HOS and re-

-

flected in the structure of the HOM facilities the incorporation
of fault-tolerant capabilities throughout the system. This allows
the design of safety-critical systems to have a greater depend-

ence on the reliable operation of computational equipment.

26

- . 3. . ¢ l
. . . B 5 B N
-4 L - " 1 Vs Sepadas : e - Rep it da-an

PRIy

The ability of the HOM to provide urlimited pfocessing concurrency

and minimized storage consumption with sufficient reliability could
'Y make possible many applications for automatic éomputation that

were previously not feasible. Of ircreasing importance in the

development of complex systems is ccmputer simulation to verify
the system operation before great expense is irnvested in building
1 operating prototypes. The HOM can crovide fully-digital simula-
tions that execute faster than real time without the expense of
long hours of operation on costly high-speed hardwzre. Because

increased accuracy and greater simulation complexi:y need not
affect simulation execution time on the HOM, much nore reliable
results can be attained.

The organized use of extensive processing concurrency also can 1
have great impact on the feasibility of automated manipulation and ??
‘control systems. The development of automated construction and
assembly facilities has been hindered by the volume of data that

must be processed simultaneously in order that the system operate

I

ey -

-G g

in real time. More accurate, flexible control systems can thus
be made possible with concurrent prccessing, relieving the time
constraints on control-law compufations for time-critical tasks.
When this capability is provided with thereliability necessary for
safety-critical applications, the performance of life-critical
functions suchas intactical-communications networks and aircraft-

il i e+ e |

flight control can be greatly enhanced by increased reliance on
automatic systems. The key to these and many other improved-per-

L] . ..
formance applications is the availability of sufficient concurrent ‘
computation with sufficient reliability fcr the minimuxm necessary
investment in .cost, weight, and size of processing hardware. L
.‘ i This is what can be provided by the HOM for systems specified
by HOS. ‘ ,
’
) 27

HIGHER ORDER SOFTWARE, INC. « £43 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139
JURE" R e SOTTEN s BRIt e S T T coe Py

. . e

CHA71

HAM76a

HAM76Db

HAM76cC

RUM7?75

THU75

SMI73

SYL75

HIGHER ORDER SOFTWARE, INC. + 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139

REFERENCES

Chamberlin, D.D. "The 'Single-Assignment' Approach to
Parallel Processing."”

Hamilton, M. and Zeldin, S. "Higher Order Software--
A Methodology for Defining Scoftware." IZEE Transactions
in Software Engineering, Vol. SE~2, No. 1, March 1976.

Hamilton, M. and Zeldin, S. "Integrated Software De-
velopment System/Higher Order Software Conceptual De-
scription," Version 1. Cambridge, Ma: Higher Order

Software, Inc. November 1976.

Hamilton, M. and Zeldin, S. "AXES Syntax Description."
Cambridge, MA: Higher Order Software, Inc. December
1976.

Rumbaugh, J. "A Parallel Asynchronous Computer Archi-
tecture for Data Flow Programs." Project MAC, Cambridge,
MA: Massachusetts Institute of Technology. May 1975.

-Thurber, K.J. and Wald, L.D. "Associative and Parellel

Processors." ACM Computer Surveys, Vol. 7, No. 4,
December 1975,

Smith, III, T.B. "A Righly Modular Fault-Tolerant
Computer System." Document T-595. Cambridce, MA:,
The Charles Stark Draper Laboratory, Inc., November
1973. :

Sylvain, P., et al. "The Design and Evaluation of the
Array Machine: A High-Level Language Processor."
Computer Science Department, University of CA, Los
Angeles, CA, 1975.

28

T e v SRS Sy An

. R o

